Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 713
Question Number 144849 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{1}}{{e}^{\left\{{x}\right\}^{\mathrm{2}} } +\mathrm{1}}{dx}\:\:\:\left\{{x}\right\}\:\:{is}\:{fractional}\:{part}\:{of}\:{x} \\ $$
Question Number 144876 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}=\mathrm{ln}\left(\mathrm{2tan}\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Question Number 144875 Answers: 1 Comments: 0
Question Number 144839 Answers: 3 Comments: 0
$${If}\:\:{x}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{5}}\:+\:\mathrm{3}\:\:{and}\:\:{y}\:=\:\mathrm{4}\:\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$$${Prove}\:{that}:\:\:{x}\:-\:{y}\:<\:\mathrm{0} \\ $$
Question Number 144833 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\alpha\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{4}}{\mathrm{sin}\:\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}=\alpha\: \\ $$$$\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{in}\:\left(\mathrm{0}\:\frac{\Pi}{\mathrm{2}}\right) \\ $$
Question Number 144831 Answers: 2 Comments: 0
$$\frac{\mathrm{3}}{\mathrm{1}\centerdot\mathrm{2}\centerdot\mathrm{3}}\:+\:\frac{\mathrm{5}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}\:+\:\frac{\mathrm{7}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}\:+\:\frac{\mathrm{9}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}\:+\:...\:\infty=? \\ $$
Question Number 144829 Answers: 2 Comments: 0
$$\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$${x}=? \\ $$
Question Number 144828 Answers: 2 Comments: 0
$$\mathrm{2sin}\:\mathrm{17}{x}+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{5}{x}+\mathrm{sin}\:\mathrm{5}{x}=\mathrm{0} \\ $$$${x}=? \\ $$
Question Number 144826 Answers: 1 Comments: 0
Question Number 144825 Answers: 1 Comments: 0
$$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{k}}{{k}^{\mathrm{4}} \:+\:\mathrm{4}}\:=\:? \\ $$
Question Number 144823 Answers: 1 Comments: 0
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\:\leqslant\:{a}+{b} \\ $$
Question Number 144822 Answers: 1 Comments: 0
$$\mathrm{sin}\:^{\mathrm{3}} {x}\mathrm{cos}\:{x}−\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${x}=? \\ $$
Question Number 144821 Answers: 0 Comments: 1
$$\mathrm{tan}\:\mathrm{193}={k} \\ $$$$\mathrm{cos}\:\mathrm{167}=? \\ $$
Question Number 144820 Answers: 1 Comments: 0
Question Number 144816 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{6x}^{\mathrm{2}} }−\left(\mathrm{1}+\mathrm{7x}\right)}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)}\:=? \\ $$
Question Number 144815 Answers: 1 Comments: 0
Question Number 144811 Answers: 0 Comments: 0
$$\int\left\{\frac{\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}\right\}{dx} \\ $$
Question Number 144810 Answers: 0 Comments: 0
Question Number 144801 Answers: 1 Comments: 2
$${if}\:{you}\:{know}\:{that}\:{the}\:{probability}\:{of}\:{a}\:{picture} \\ $$$${appearing}\:{when}\:{acoin}\:{is}\:{tossed}\:{is}\:\mathrm{2}/\mathrm{5} \\ $$$${then}\:{the}\:{probability}\:{of}\:{getting}\:{writings}\: \\ $$$${when}\:{this}\:{coin}\:{is}\:{tossed}\:\mathrm{6}\:{times}\:? \\ $$
Question Number 144800 Answers: 1 Comments: 0
$$\mathrm{Let}\:\beta\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{angle}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} +\mathrm{4xcos}\:\beta+\mathrm{cot}\:\beta=\mathrm{0} \\ $$$$\mathrm{involving}\:\mathrm{variable}\:\mathrm{x}\:\mathrm{has}\:\mathrm{multiple} \\ $$$$\mathrm{roots}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\beta\:\mathrm{in} \\ $$$$\mathrm{radians}\:\mathrm{is}\:\_\_ \\ $$
Question Number 144799 Answers: 0 Comments: 0
Question Number 144794 Answers: 0 Comments: 0
Question Number 144792 Answers: 1 Comments: 0
$$\:\int\:\frac{\mathrm{2x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}}\:\mathrm{dx}\:? \\ $$
Question Number 144791 Answers: 1 Comments: 0
$$\:\mathrm{Express}\:\mathrm{sin}\:\mathrm{5x}\:\mathrm{as}\:\mathrm{polynomial} \\ $$$$\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{sin}\:\mathrm{x}.\: \\ $$
Question Number 144813 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\:\left({x}\right)}{\mathrm{1}\:+\:{x}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left({x}\:\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\:{n}} \:{x}^{\:\mathrm{2}{n}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(\:−\mathrm{1}\:\right)^{\:{n}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}} \:\mathrm{ln}\left(\:{x}\:\right){dx} \\ $$$$\:\:\:\:\:\:\:\::\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\:−\mathrm{1}\:\right)^{\:{n}} \left\{\:\left[\frac{{x}^{\:\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}\:+\mathrm{1}}\:\mathrm{ln}\:\left(\:{x}\:\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\left(\mathrm{2}{n}\:+\mathrm{1}\:\right)^{\:\mathrm{2}} \:}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\:\infty} {\sum}}\frac{\left(\:−\mathrm{1}\:\right)^{\:{n}−\mathrm{1}} }{\left(\:\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\:−\mathrm{G}\:\:\left(\mathrm{Catalan}\:\mathrm{constant}\:\right) \\ $$
Question Number 144789 Answers: 0 Comments: 0
Pg 708 Pg 709 Pg 710 Pg 711 Pg 712 Pg 713 Pg 714 Pg 715 Pg 716 Pg 717
Terms of Service
Privacy Policy
Contact: info@tinkutara.com