Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 713
Question Number 147353 Answers: 0 Comments: 0
Question Number 147349 Answers: 2 Comments: 2
$$\:\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{e}^{\mathrm{x}} \:\mathrm{sin}\:\mathrm{x}}\:=? \\ $$
Question Number 147346 Answers: 1 Comments: 0
Question Number 147330 Answers: 0 Comments: 1
Question Number 147328 Answers: 1 Comments: 1
Question Number 147322 Answers: 1 Comments: 3
Question Number 147321 Answers: 0 Comments: 0
Question Number 147320 Answers: 1 Comments: 0
$$\mathrm{16}{x}+\mathrm{9}{y}=\mathrm{1} \\ $$$${find}\:{x}\:{and}\:{y} \\ $$
Question Number 147312 Answers: 1 Comments: 0
Question Number 147310 Answers: 1 Comments: 1
Question Number 147309 Answers: 2 Comments: 0
Question Number 147303 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\:\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:\:=\:\:\mathrm{a},\:\:\:\:\:\:\mathrm{log}_{\mathrm{15}} \mathrm{24}\:\:\:=\:\:\:\mathrm{b},\:\:\:\:\:\:\:\mathrm{evaluate}\:\:\:\:\:\:\mathrm{log}_{\mathrm{12}} \mathrm{60} \\ $$
Question Number 147302 Answers: 1 Comments: 0
$${P}_{{a}} \left({z}\right)={z}^{\mathrm{2}{n}} −\mathrm{2}{z}^{{n}} {cosa}+\mathrm{1} \\ $$$${montrer}\:{que}\:\:{p}_{{a}} \left(\mathrm{z}\right)=\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}^{\mathrm{2}} −\mathrm{2}{zcos}\left(\frac{{a}}{\pi}+\frac{\mathrm{2}{k}\pi}{{n}}\right)+\mathrm{1}\right) \\ $$
Question Number 147294 Answers: 1 Comments: 0
$$\Sigma\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{4}} }=? \\ $$
Question Number 147290 Answers: 0 Comments: 0
Question Number 147287 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...\mathrm{Advanced}\:\:\mathrm{Calculus}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{C}{alculate}\:::\:\:\:\:\begin{cases}{\:\:\mathrm{i}\:::\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left(\mathrm{x}\right).\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\:\mathrm{dx}}\\{\:\:\mathrm{ii}\:::\:\:\:\:\:\mathrm{J}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \left(\:\mathrm{1}−\:\mathrm{x}^{\:\mathrm{2}} \right)\:=?}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Note}::\:\:\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{x}\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\:\infty} {\sum}}\:\frac{\mathrm{x}^{\:{n}} }{{n}^{\:\mathrm{2}} }\:\:\:\:........\:\blacksquare\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:....\:\mathrm{m}.\mathrm{n}.... \\ $$$$ \\ $$
Question Number 147285 Answers: 1 Comments: 0
$$\:\:\:\mathrm{Q}: \\ $$$$ \\ $$$$\:{if}\:,\:\:\:{g}\:\left({x}\right)\:=\:\mathrm{2}^{\:\lfloor{x}\rfloor\:+\:{x}} \:\:,\:\mathrm{D}_{\:{g}} =\:\left[\mathrm{0},\:\infty\:\right) \\ $$$$\:\:\:\:\:\:{then}\:: \\ $$$$\:\:\:\:\:\:\:\:{g}^{\:−\mathrm{1}} \:\left({x}\:\right)=? \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{D}_{{g}^{\:−\mathrm{1}} } =\:? \\ $$$$ \\ $$
Question Number 147278 Answers: 0 Comments: 0
Question Number 147277 Answers: 0 Comments: 0
Question Number 147276 Answers: 0 Comments: 0
Question Number 147275 Answers: 1 Comments: 0
$${f}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} {e}^{{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}} {dt}\: \\ $$$${show}\:{that}\:\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({t}\right){dt}=\sqrt{{e}}−\mathrm{1} \\ $$
Question Number 147272 Answers: 1 Comments: 0
Question Number 147262 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...#\:\:\mathrm{Calculus}\:#... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \:\left({x}^{\:\mathrm{2}} \right)\:{dx}\:=\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 147260 Answers: 1 Comments: 0
Question Number 147259 Answers: 2 Comments: 0
Question Number 147258 Answers: 0 Comments: 0
Pg 708 Pg 709 Pg 710 Pg 711 Pg 712 Pg 713 Pg 714 Pg 715 Pg 716 Pg 717
Terms of Service
Privacy Policy
Contact: info@tinkutara.com