Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 713

Question Number 144849    Answers: 1   Comments: 0

∫_0 ^2 (1/(e^({x}^2 ) +1))dx {x} is fractional part of x

$$\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{1}}{{e}^{\left\{{x}\right\}^{\mathrm{2}} } +\mathrm{1}}{dx}\:\:\:\left\{{x}\right\}\:\:{is}\:{fractional}\:{part}\:{of}\:{x} \\ $$

Question Number 144876    Answers: 1   Comments: 0

∫_0 ^1 ((1/(sin x))−(1/x))dx=ln(2tan (1/2))

$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}=\mathrm{ln}\left(\mathrm{2tan}\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$

Question Number 144875    Answers: 1   Comments: 0

Question Number 144839    Answers: 3   Comments: 0

If x = (5)^(1/3) + 3 and y = 4 (3)^(1/3) Prove that: x - y < 0

$${If}\:\:{x}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{5}}\:+\:\mathrm{3}\:\:{and}\:\:{y}\:=\:\mathrm{4}\:\sqrt[{\mathrm{3}}]{\mathrm{3}} \\ $$$${Prove}\:{that}:\:\:{x}\:-\:{y}\:<\:\mathrm{0} \\ $$

Question Number 144833    Answers: 1   Comments: 0

find the least value of α such that (4/(sin x))+(1/(1−sin x))=α has at least one solution in (0 (Π/2))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{least}\:\mathrm{value}\:\mathrm{of}\:\alpha\:\mathrm{such}\:\mathrm{that}\:\frac{\mathrm{4}}{\mathrm{sin}\:\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}=\alpha\: \\ $$$$\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{in}\:\left(\mathrm{0}\:\frac{\Pi}{\mathrm{2}}\right) \\ $$

Question Number 144831    Answers: 2   Comments: 0

(3/(1∙2∙3)) + (5/(2∙3∙4)) + (7/(3∙4∙5)) + (9/(4∙5∙6)) + ... ∞=?

$$\frac{\mathrm{3}}{\mathrm{1}\centerdot\mathrm{2}\centerdot\mathrm{3}}\:+\:\frac{\mathrm{5}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}\:+\:\frac{\mathrm{7}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}\:+\:\frac{\mathrm{9}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}\:+\:...\:\infty=? \\ $$

Question Number 144829    Answers: 2   Comments: 0

sin^3 x+cos^3 x=1−(1/2)sin^2 x x=?

$$\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} {x} \\ $$$${x}=? \\ $$

Question Number 144828    Answers: 2   Comments: 0

2sin 17x+(√3) cos 5x+sin 5x=0 x=?

$$\mathrm{2sin}\:\mathrm{17}{x}+\sqrt{\mathrm{3}}\:\mathrm{cos}\:\mathrm{5}{x}+\mathrm{sin}\:\mathrm{5}{x}=\mathrm{0} \\ $$$${x}=? \\ $$

Question Number 144826    Answers: 1   Comments: 0

Question Number 144825    Answers: 1   Comments: 0

Σ_(k=0) ^∞ (k/(k^4 + 4)) = ?

$$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{k}}{{k}^{\mathrm{4}} \:+\:\mathrm{4}}\:=\:? \\ $$

Question Number 144823    Answers: 1   Comments: 0

Let a,b > 0 and a+b+1 = 3ab. Prove that ((a+1)/(b+1))+((b+1)/(a+1)) ≤ a+b

$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}+\mathrm{1}}{{b}+\mathrm{1}}+\frac{{b}+\mathrm{1}}{{a}+\mathrm{1}}\:\leqslant\:{a}+{b} \\ $$

Question Number 144822    Answers: 1   Comments: 0

sin^3 xcos x−cos^3 xsin x=(1/4) x=?

$$\mathrm{sin}\:^{\mathrm{3}} {x}\mathrm{cos}\:{x}−\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${x}=? \\ $$

Question Number 144821    Answers: 0   Comments: 1

tan 193=k cos 167=?

$$\mathrm{tan}\:\mathrm{193}={k} \\ $$$$\mathrm{cos}\:\mathrm{167}=? \\ $$

Question Number 144820    Answers: 1   Comments: 0

Question Number 144816    Answers: 2   Comments: 0

lim_(x→0) (((√(1+6x^2 ))−(1+7x))/(x^2 (x−3))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\mathrm{6x}^{\mathrm{2}} }−\left(\mathrm{1}+\mathrm{7x}\right)}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}−\mathrm{3}\right)}\:=? \\ $$

Question Number 144815    Answers: 1   Comments: 0

Question Number 144811    Answers: 0   Comments: 0

∫{(3/( (√(x^2 −tan^2 x))))}dx

$$\int\left\{\frac{\mathrm{3}}{\:\sqrt{{x}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}\right\}{dx} \\ $$

Question Number 144810    Answers: 0   Comments: 0

Question Number 144801    Answers: 1   Comments: 2

if you know that the probability of a picture appearing when acoin is tossed is 2/5 then the probability of getting writings when this coin is tossed 6 times ?

$${if}\:{you}\:{know}\:{that}\:{the}\:{probability}\:{of}\:{a}\:{picture} \\ $$$${appearing}\:{when}\:{acoin}\:{is}\:{tossed}\:{is}\:\mathrm{2}/\mathrm{5} \\ $$$${then}\:{the}\:{probability}\:{of}\:{getting}\:{writings}\: \\ $$$${when}\:{this}\:{coin}\:{is}\:{tossed}\:\mathrm{6}\:{times}\:? \\ $$

Question Number 144800    Answers: 1   Comments: 0

Let β be an acute angle such that the equation x^2 +4xcos β+cot β=0 involving variable x has multiple roots. Then the measure of β in radians is __

$$\mathrm{Let}\:\beta\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{angle}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{x}^{\mathrm{2}} +\mathrm{4xcos}\:\beta+\mathrm{cot}\:\beta=\mathrm{0} \\ $$$$\mathrm{involving}\:\mathrm{variable}\:\mathrm{x}\:\mathrm{has}\:\mathrm{multiple} \\ $$$$\mathrm{roots}.\:\mathrm{Then}\:\mathrm{the}\:\mathrm{measure}\:\mathrm{of}\:\beta\:\mathrm{in} \\ $$$$\mathrm{radians}\:\mathrm{is}\:\_\_ \\ $$

Question Number 144799    Answers: 0   Comments: 0

Question Number 144794    Answers: 0   Comments: 0

Question Number 144792    Answers: 1   Comments: 0

∫ ((2x^3 −1)/(x^4 +x)) dx ?

$$\:\int\:\frac{\mathrm{2x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{4}} +\mathrm{x}}\:\mathrm{dx}\:? \\ $$

Question Number 144791    Answers: 1   Comments: 0

Express sin 5x as polynomial in terms of sin x.

$$\:\mathrm{Express}\:\mathrm{sin}\:\mathrm{5x}\:\mathrm{as}\:\mathrm{polynomial} \\ $$$$\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{sin}\:\mathrm{x}.\: \\ $$

Question Number 144813    Answers: 0   Comments: 1

I:=∫_0 ^( 1) ((ln (x))/(1 + x^( 2) )) dx := ∫_0 ^( 1) ln(x ) Σ_(n=0) ^∞ (−1)^( n) x^( 2n) dx := Σ_(n=0) ^∞ ( −1 )^( n) ∫_0 ^( 1) x^( 2n) ln( x )dx : = Σ_(n=0) ^∞ ( −1 )^( n) { [(x^( 2n+1) /(2n +1)) ln ( x )]_0 ^( 1) −(1/((2n +1 )^( 2) )) } : = Σ_(n=1) ^( ∞) ((( −1 )^( n−1) )/(( 2n +1)^( 2) )) = −G (Catalan constant )

$$ \\ $$$$\:\:\:\:\:\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\:\left({x}\right)}{\mathrm{1}\:+\:{x}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{ln}\left({x}\:\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\:{n}} \:{x}^{\:\mathrm{2}{n}} \:{dx} \\ $$$$\:\:\:\:\:\:\:\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(\:−\mathrm{1}\:\right)^{\:{n}} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:\mathrm{2}{n}} \:\mathrm{ln}\left(\:{x}\:\right){dx} \\ $$$$\:\:\:\:\:\:\:\::\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\:−\mathrm{1}\:\right)^{\:{n}} \left\{\:\left[\frac{{x}^{\:\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}\:+\mathrm{1}}\:\mathrm{ln}\:\left(\:{x}\:\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\left(\mathrm{2}{n}\:+\mathrm{1}\:\right)^{\:\mathrm{2}} \:}\:\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\:\infty} {\sum}}\frac{\left(\:−\mathrm{1}\:\right)^{\:{n}−\mathrm{1}} }{\left(\:\mathrm{2}{n}\:+\mathrm{1}\right)^{\:\mathrm{2}} }\:=\:−\mathrm{G}\:\:\left(\mathrm{Catalan}\:\mathrm{constant}\:\right) \\ $$

Question Number 144789    Answers: 0   Comments: 0

  Pg 708      Pg 709      Pg 710      Pg 711      Pg 712      Pg 713      Pg 714      Pg 715      Pg 716      Pg 717   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com