Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 711
Question Number 144926 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}} \left({e}^{{ix}} \right)^{{z}} {dx}=???\:\:\:\left({z}\in\mathbb{C}\right) \\ $$
Question Number 144925 Answers: 1 Comments: 0
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}\right)!!}{\mathrm{2}^{\mathrm{n}} \centerdot\left(\mathrm{n}+\mathrm{1}\right)\centerdot\left(\mathrm{2n}+\mathrm{1}\right)!!}=? \\ $$
Question Number 144924 Answers: 1 Comments: 0
$$\mathrm{S}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}\right)!!}{\left(\mathrm{2n}+\mathrm{1}\right)!!}\mathrm{x}^{\mathrm{2n}} =?........\left(\mid\mathrm{x}\mid<\mathrm{1}\right) \\ $$
Question Number 144922 Answers: 1 Comments: 0
$${if}\:\:{z}^{\mathrm{2}} \:-\:\mathrm{16}\sqrt{{z}}\:=\:\mathrm{12} \\ $$$${find}\:\:{z}\:-\:\mathrm{2}\sqrt{{z}}\:=\:? \\ $$
Question Number 144917 Answers: 1 Comments: 0
$${if}\:\:{x};{y}>\mathrm{0}\:\:{then}: \\ $$$$\mathrm{10}\:\centerdot\:\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\:+\:\frac{\mathrm{8}{xy}}{{x}+{y}}\:\geqslant\:\mathrm{7}{x}+\mathrm{7}{y} \\ $$
Question Number 144914 Answers: 2 Comments: 0
$$\:\mathrm{If}\:\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}{\mathrm{1}−\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}\:=\:\mathrm{tan}\:\theta\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\left(\theta+\mathrm{11}\sqrt{\theta}\:\right). \\ $$
Question Number 144910 Answers: 0 Comments: 0
$$\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{1}−{i}}\right)=???? \\ $$
Question Number 144909 Answers: 1 Comments: 0
$$\Gamma\left({a}+{ib}\right)\:{doesn}'{t}\:{exist}\:?\:{give}\:{her}\:{value} \\ $$
Question Number 144903 Answers: 0 Comments: 0
Question Number 144900 Answers: 1 Comments: 0
$${etude}\:{complete}\:{de}\:{la}\:{courbe}\:{d}'{equation} \\ $$$${polaire}\:{r}=\frac{\mathrm{1}}{{sin}\left(\mathrm{2}\theta\right)}\:\:\:\:\left({symetrie}\:{et}\:{trace}\right) \\ $$$$ \\ $$
Question Number 144899 Answers: 0 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\Omega\::=\:\int\:\frac{\sqrt{\mathrm{1}−{sin}\left({x}\right)}}{{cos}\:\left({x}\right)}\:{e}\:^{−\frac{\mathrm{1}}{\mathrm{2}}\:{x}} =\:? \\ $$$$ \\ $$
Question Number 144897 Answers: 0 Comments: 0
$$\underset{\mathrm{0}} {\overset{\frac{\left[{x}\right]}{\mathrm{3}}} {\int}}\frac{\mathrm{8}^{{x}} }{\mathrm{2}^{\left[\mathrm{3}{x}\right]} }\:{dx}=\:???\:\mathrm{where}\:\left[.\right]\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}. \\ $$
Question Number 144896 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\: \\ $$$$\:\int{e}^{{x}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} {dx}\: \\ $$
Question Number 144890 Answers: 1 Comments: 1
Question Number 144888 Answers: 2 Comments: 1
Question Number 144887 Answers: 1 Comments: 0
Question Number 144905 Answers: 0 Comments: 1
Question Number 144877 Answers: 1 Comments: 0
$$\:\:\mathrm{u}+\sqrt{\mathrm{u}}+\sqrt[{\mathrm{3}}]{\mathrm{u}}+\sqrt[{\mathrm{4}}]{\mathrm{u}}+\sqrt[{\mathrm{5}}]{\mathrm{u}}+...\:+\infty=? \\ $$$$ \\ $$
Question Number 144872 Answers: 0 Comments: 0
Question Number 144869 Answers: 1 Comments: 0
$${if}\:\:\mathrm{3}^{\boldsymbol{{z}}} \:=\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{5}\sqrt{\mathrm{3}}} \:\centerdot\:\mathrm{3}^{\mathrm{2}} }\:\:{find}\:\:\boldsymbol{{z}}=? \\ $$
Question Number 144901 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}}\:\leqslant\:\mathrm{1}\:\leqslant\:\frac{{a}^{\mathrm{3}} }{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}^{\mathrm{3}} }{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0},\:{n}\:\in\:\mathbb{Z}^{+} \:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{{n}−\mathrm{1}} }{{a}^{{n}} +\mathrm{1}}+\frac{{b}^{{n}−\mathrm{1}} }{{b}^{{n}} +\mathrm{1}}\:\leqslant\:\mathrm{1}\:\leqslant\:\frac{{a}^{{n}+\mathrm{1}} }{{a}^{{n}} +\mathrm{1}}+\frac{{b}^{{n}+\mathrm{1}} }{{b}^{{n}} +\mathrm{1}} \\ $$$$ \\ $$
Question Number 144860 Answers: 0 Comments: 2
$$\mid\frac{{x}}{{x}-\mathrm{1}}\mid\:+\:\mid{x}\mid\:=\:\frac{{x}^{\mathrm{2}} }{\mid{x}-\mathrm{1}\mid}\:\:\:{find}\:\:{x}=? \\ $$
Question Number 144858 Answers: 1 Comments: 0
Question Number 144857 Answers: 0 Comments: 0
Question Number 144849 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{2}} \frac{\mathrm{1}}{{e}^{\left\{{x}\right\}^{\mathrm{2}} } +\mathrm{1}}{dx}\:\:\:\left\{{x}\right\}\:\:{is}\:{fractional}\:{part}\:{of}\:{x} \\ $$
Question Number 144876 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{x}}\right)\mathrm{dx}=\mathrm{ln}\left(\mathrm{2tan}\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$
Pg 706 Pg 707 Pg 708 Pg 709 Pg 710 Pg 711 Pg 712 Pg 713 Pg 714 Pg 715
Terms of Service
Privacy Policy
Contact: info@tinkutara.com