Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 711

Question Number 147130    Answers: 1   Comments: 2

Question Number 147115    Answers: 0   Comments: 0

pleaae there is challenge to this question as to whether the answer is ((43)/6) OR −((1187)/(42)) please help Question simplify 37(1/2) ÷ (5/9) of ((4/7)+(1/5))−80(1/3). the same question but different answer from different books

$$\mathrm{pleaae}\:\mathrm{there}\:\mathrm{is}\:\mathrm{challenge}\:\mathrm{to}\:\mathrm{this}\: \\ $$$$\mathrm{question}\:\mathrm{as}\:\mathrm{to}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is} \\ $$$$\:\:\:\:\:\frac{\mathrm{43}}{\mathrm{6}}\:\:\:\mathrm{OR}\:\:\:−\frac{\mathrm{1187}}{\mathrm{42}}\:\:\mathrm{please}\:\mathrm{help} \\ $$$$\mathrm{Question}\: \\ $$$$\mathrm{simplify}\:\:\mathrm{37}\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{\div}\:\frac{\mathrm{5}}{\mathrm{9}}\:\mathrm{of}\:\left(\frac{\mathrm{4}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{5}}\right)−\mathrm{80}\frac{\mathrm{1}}{\mathrm{3}}. \\ $$$$\:\mathrm{the}\:\mathrm{same}\:\mathrm{question}\:\mathrm{but}\:\mathrm{different}\: \\ $$$$\mathrm{answer}\:\mathrm{from}\:\mathrm{different}\:\mathrm{books} \\ $$

Question Number 147122    Answers: 1   Comments: 0

lim_(n→∞) Σ_(k=1) ^n 2^k ∙((2)^(1/2^k ) −1)^2 = ?

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\mathrm{2}^{\boldsymbol{{k}}} \centerdot\left(\sqrt[{\mathrm{2}^{\boldsymbol{{k}}} }]{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} \:=\:?\: \\ $$

Question Number 147344    Answers: 1   Comments: 0

lim_(n→∞) ∫_( 0) ^( 1) log (((1+sin^n x)/(1+x+x^n )))dx = ?

$$\underset{{n}\rightarrow\infty} {{lim}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{log}\:\left(\frac{\mathrm{1}+{sin}^{\boldsymbol{{n}}} \boldsymbol{{x}}}{\mathrm{1}+{x}+{x}^{\boldsymbol{{n}}} }\right){dx}\:=\:? \\ $$

Question Number 147119    Answers: 2   Comments: 0

if x>−1 , q≥2 then: (1+x)^q ≥ 1+qx+(q−1)x^2

$${if}\:\:\:{x}>−\mathrm{1}\:,\:{q}\geqslant\mathrm{2}\:\:\:{then}: \\ $$$$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\mathrm{1}+{qx}+\left({q}−\mathrm{1}\right){x}^{\mathrm{2}} \\ $$

Question Number 147118    Answers: 1   Comments: 0

Question Number 147116    Answers: 2   Comments: 5

a+b+c=1 a^2 +b^2 +c^2 =1 a^3 +b^3 +c^3 =1 a , b , c =?

$${a}+{b}+{c}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{1} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{1} \\ $$$${a}\:,\:{b}\:,\:{c}\:=? \\ $$

Question Number 147108    Answers: 2   Comments: 0

Question Number 147103    Answers: 2   Comments: 0

Question Number 147101    Answers: 1   Comments: 0

find U_n =∫_0 ^1 (1+x^2 )(1+x^4 )....(1+x^2^n )dx

$$\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}^{\mathrm{n}} } \right)\mathrm{dx} \\ $$

Question Number 147100    Answers: 0   Comments: 0

findA_n = ∫_0 ^1 x(x+1)(x+2)....(x+n)dx

$$\mathrm{findA}_{\mathrm{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}+\mathrm{2}\right)....\left(\mathrm{x}+\mathrm{n}\right)\mathrm{dx} \\ $$

Question Number 147093    Answers: 3   Comments: 2

(1)lim_(x→π/2) ((cos 4x−cos 2x−2)/((2x−π)^2 )) =? (2)lim_(x→0) ((sin 3x+sin 6x−sin 9x)/x^3 ) =? (3)lim_(x→π/4) ((sec^2 x−2tan x)/((x−(π/4))^2 )) =? (4)lim_(x→0) ((12−6x^2 −12cos x)/x^4 )=? (5)lim_(x→0) ((sin^2 x−sin^2 2x+3x^2 )/x^4 )=?

$$\left(\mathrm{1}\right)\underset{{x}\rightarrow\pi/\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4}{x}−\mathrm{cos}\:\mathrm{2}{x}−\mathrm{2}}{\left(\mathrm{2}{x}−\pi\right)^{\mathrm{2}} }\:=? \\ $$$$\left(\mathrm{2}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{3}{x}+\mathrm{sin}\:\mathrm{6}{x}−\mathrm{sin}\:\mathrm{9}{x}}{{x}^{\mathrm{3}} }\:=? \\ $$$$\left(\mathrm{3}\right)\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\mathrm{sec}\:^{\mathrm{2}} {x}−\mathrm{2tan}\:{x}}{\left({x}−\frac{\pi}{\mathrm{4}}\right)^{\mathrm{2}} }\:=? \\ $$$$\left(\mathrm{4}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{12}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12cos}\:{x}}{{x}^{\mathrm{4}} }=? \\ $$$$\left(\mathrm{5}\right)\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:^{\mathrm{2}} {x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} }=? \\ $$

Question Number 147091    Answers: 1   Comments: 0

Question Number 147076    Answers: 2   Comments: 0

a+b+c=1 a^2 +b^2 +c^2 =1 ⇒ abc=? a^3 +b^3 +c^3 =1

$${a}+{b}+{c}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{1}\:\:\:\:\:\Rightarrow\:\:\:{abc}=? \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{1} \\ $$

Question Number 147071    Answers: 1   Comments: 0

prove that (√(1+(√(1+(√(1+(√(1+...)))))))) = 1+(1/(1+(1/(1+(1/(1+⋱))))))

$${prove}\:{that} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+...}}}}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\ddots}}} \\ $$

Question Number 147068    Answers: 1   Comments: 0

find laplase transforme of e^((t−1)^2 )

$${find}\:{laplase}\:{transforme}\:{of}\:{e}^{\left({t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 147066    Answers: 3   Comments: 0

find laurant series lf (1)f(z)=(1/(z−1))+(1/(z+2)) ,∣z∣>1 (2)f(z)=(1/(z−2))−(2/(z−3)) ,∣z∣<3

$${find}\:{laurant}\:{series}\:{lf} \\ $$$$ \\ $$$$\:\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{1}}+\frac{\mathrm{1}}{{z}+\mathrm{2}}\:\:,\mid{z}\mid>\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{2}}−\frac{\mathrm{2}}{{z}−\mathrm{3}}\:\:,\mid{z}\mid<\mathrm{3} \\ $$

Question Number 147061    Answers: 2   Comments: 0

∫_( 0 ) ^( ∞) (x^a /((1+x^3 ))) (dx/x) =? 0<a<3

$$\:\:\:\:\:\int_{\:\mathrm{0}\:} ^{\:\infty} \:\frac{{x}^{{a}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}\:\frac{{dx}}{{x}}\:=?\: \\ $$$$\:\:\mathrm{0}<{a}<\mathrm{3}\:\: \\ $$

Question Number 147060    Answers: 1   Comments: 0

∫_0 ^(π/2) e^(2x) (√(tanx))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{\mathrm{2}{x}} \sqrt{{tanx}}{dx} \\ $$

Question Number 147035    Answers: 2   Comments: 0

using residue theorem evaluate ∫_(∣z∣=3) ((zsecz)/((z−1)^2 ))dz

$${using}\:{residue}\:{theorem} \\ $$$${evaluate}\:\:\int_{\mid{z}\mid=\mathrm{3}} \frac{{zsecz}}{\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{dz} \\ $$

Question Number 147031    Answers: 5   Comments: 0

Question Number 147028    Answers: 0   Comments: 0

Question Number 147022    Answers: 0   Comments: 0

Question Number 147018    Answers: 1   Comments: 1

Question Number 147015    Answers: 0   Comments: 0

Question Number 147011    Answers: 2   Comments: 3

2x - (√(2x - 3)) - 9 = 0 if there′s a solution to equation, find 4a + 3 = ?

$$\mathrm{2}{x}\:-\:\sqrt{\mathrm{2}{x}\:-\:\mathrm{3}}\:-\:\mathrm{9}\:=\:\mathrm{0} \\ $$$${if}\:{there}'{s}\:\boldsymbol{{a}}\:{solution}\:{to}\:{equation}, \\ $$$${find}\:\:\mathrm{4}\boldsymbol{{a}}\:+\:\mathrm{3}\:=\:? \\ $$

  Pg 706      Pg 707      Pg 708      Pg 709      Pg 710      Pg 711      Pg 712      Pg 713      Pg 714      Pg 715   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com