Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 711

Question Number 147684    Answers: 0   Comments: 0

decompse F(x)=(x^3 /((x^2 +1)^4 )) inside C(x)

$$\mathrm{decompse}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} }\:\:\:\mathrm{inside}\:\mathrm{C}\left(\mathrm{x}\right) \\ $$

Question Number 147683    Answers: 1   Comments: 0

let F(x)=(1/((x+1)^5 (2x−3)^4 )) 1) find ∫ F(x)dx 2)en deduire la decomposition de F en element simples

$$\mathrm{let}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{2x}−\mathrm{3}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{find}\:\int\:\mathrm{F}\left(\mathrm{x}\right)\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\mathrm{en}\:\mathrm{deduire}\:\mathrm{la}\:\mathrm{decomposition}\:\mathrm{de}\:\mathrm{F}\:\mathrm{en}\:\mathrm{element}\:\mathrm{simples} \\ $$

Question Number 147682    Answers: 0   Comments: 0

decompose F(x)=(1/((x^n −1)(x^2 +x+1))) dans C(x) puis dans R(x)

$$\mathrm{decompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\left(\mathrm{x}^{\mathrm{n}} −\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dans}\:\mathrm{C}\left(\mathrm{x}\right)\:\mathrm{puis}\:\mathrm{dans}\:\mathrm{R}\left(\mathrm{x}\right) \\ $$

Question Number 147680    Answers: 0   Comments: 2

find by residus ∫_0 ^∞ ((cos(2x))/((x^2 −x+1)^3 ))dx

$$\mathrm{find}\:\mathrm{by}\:\mathrm{residus}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$

Question Number 147678    Answers: 0   Comments: 0

roots of Υ_n (x)=sin(narcsinx) (n integr natural) deompose F(x)=(1/(Υ_n (x)))

$$\mathrm{roots}\:\mathrm{of}\:\:\Upsilon_{\mathrm{n}} \left(\mathrm{x}\right)=\mathrm{sin}\left(\mathrm{narcsinx}\right)\:\:\left(\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\right) \\ $$$$\mathrm{deompose}\:\mathrm{F}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\Upsilon_{\mathrm{n}} \left(\mathrm{x}\right)} \\ $$

Question Number 147673    Answers: 3   Comments: 0

Question Number 147670    Answers: 1   Comments: 0

Question Number 147654    Answers: 0   Comments: 1

Question Number 147651    Answers: 1   Comments: 2

tan 1°+tan 5°+tan 9°+...+tan 173°+tan 177°=?

$$\:\mathrm{tan}\:\mathrm{1}°+\mathrm{tan}\:\mathrm{5}°+\mathrm{tan}\:\mathrm{9}°+...+\mathrm{tan}\:\mathrm{173}°+\mathrm{tan}\:\mathrm{177}°=? \\ $$

Question Number 147643    Answers: 2   Comments: 0

tan (x+(π/4))+3(tan (π/9)+tan ((2π)/9))=tan (x+(π/4))tan (π/9)tan ((2π)/9)

$$\:\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)+\mathrm{3}\left(\mathrm{tan}\:\frac{\pi}{\mathrm{9}}+\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}}\right)=\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{4}}\right)\mathrm{tan}\:\frac{\pi}{\mathrm{9}}\mathrm{tan}\:\frac{\mathrm{2}\pi}{\mathrm{9}} \\ $$

Question Number 147635    Answers: 0   Comments: 5

find the taylor series f(z)=cosz ,z=(π/4)

$${find}\:{the}\:{taylor}\:{series}\:{f}\left({z}\right)={cosz}\:\:,{z}=\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$$$ \\ $$

Question Number 147626    Answers: 2   Comments: 0

∫_( 0) ^( 3) (dx/(2 + cosx)) = ?

$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{3}} {\int}}\:\frac{{dx}}{\mathrm{2}\:+\:{cosx}}\:=\:? \\ $$

Question Number 147624    Answers: 0   Comments: 0

The current in the windings on a toroid is 2.0A.There are 400 turns and the mean circumferential length is 40cm.With the aid of a search coil and charge measuring instrument the magnetic field is found to be 1.0T.calculate: i)magnetic density ii)magnetization iii) magnetic susceptibility

$$\mathrm{The}\:\mathrm{current}\:\mathrm{in}\:\mathrm{the}\:\mathrm{windings}\:\mathrm{on}\:\mathrm{a}\: \\ $$$$\mathrm{toroid}\:\mathrm{is}\:\mathrm{2}.\mathrm{0A}.\mathrm{There}\:\mathrm{are}\:\mathrm{400}\:\mathrm{turns} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{circumferential}\:\mathrm{length} \\ $$$$\mathrm{is}\:\mathrm{40cm}.\mathrm{With}\:\mathrm{the}\:\mathrm{aid}\:\mathrm{of}\:\mathrm{a}\:\mathrm{search} \\ $$$$\:\mathrm{coil}\:\mathrm{and}\:\mathrm{charge}\:\mathrm{measuring}\:\mathrm{instrument} \\ $$$$\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{1}.\mathrm{0T}.\mathrm{calculate}: \\ $$$$\left.\mathrm{i}\left.\right)\mathrm{magnetic}\:\mathrm{density}\:\mathrm{ii}\right)\mathrm{magnetization} \\ $$$$\left.\mathrm{iii}\right)\:\mathrm{magnetic}\:\mathrm{susceptibility} \\ $$

Question Number 147623    Answers: 0   Comments: 1

Question Number 147622    Answers: 0   Comments: 1

Question Number 147621    Answers: 1   Comments: 0

Find the general solution for: (dy/dx) = (3x + 2y + 1)^2

$${Find}\:{the}\:{general}\:{solution}\:{for}: \\ $$$$\frac{{dy}}{{dx}}\:=\:\left(\mathrm{3}{x}\:+\:\mathrm{2}{y}\:+\:\mathrm{1}\right)^{\mathrm{2}} \\ $$

Question Number 147612    Answers: 2   Comments: 0

Given that f(x)=(((x^3 +1)^2 (√(1+x^2 )))/(1+(√x))). By using logarithmatic differentiation, find the value of f ′(1).

$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)=\frac{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{{x}}}. \\ $$$$\mathrm{By}\:\mathrm{using}\:\mathrm{logarithmatic}\:\mathrm{differentiation}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{f}\:'\left(\mathrm{1}\right). \\ $$

Question Number 147611    Answers: 3   Comments: 0

(111)_(10) = (x)_5 ⇒ x = ?

$$\left(\mathrm{111}\right)_{\mathrm{10}} \:=\:\left({x}\right)_{\mathrm{5}} \\ $$$$\Rightarrow\:{x}\:=\:? \\ $$

Question Number 147609    Answers: 0   Comments: 0

Question Number 147606    Answers: 0   Comments: 0

(R/r)=(5/2) ⇒ a:b:c=3:4:5 prove R,r− radius h_a :h_b :h_c =(1/a):(1/b):(1/c)=bc:ac:ab prove

$$\frac{\boldsymbol{\mathrm{R}}}{\boldsymbol{{r}}}=\frac{\mathrm{5}}{\mathrm{2}}\:\:\Rightarrow\:\boldsymbol{{a}}:\boldsymbol{{b}}:\boldsymbol{{c}}=\mathrm{3}:\mathrm{4}:\mathrm{5} \\ $$$$\boldsymbol{\mathrm{prove}}\:\: \\ $$$$\boldsymbol{\mathrm{R}},\boldsymbol{{r}}−\:\boldsymbol{\mathrm{radius}} \\ $$$$\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} =\frac{\mathrm{1}}{\boldsymbol{{a}}}:\frac{\mathrm{1}}{\boldsymbol{{b}}}:\frac{\mathrm{1}}{\boldsymbol{{c}}}=\boldsymbol{{bc}}:\boldsymbol{{ac}}:\boldsymbol{{ab}} \\ $$$$\boldsymbol{{prove}} \\ $$

Question Number 147603    Answers: 1   Comments: 0

Question Number 147602    Answers: 1   Comments: 0

Question Number 147593    Answers: 2   Comments: 0

Question Number 147587    Answers: 1   Comments: 1

Question Number 147585    Answers: 1   Comments: 0

Question Number 147582    Answers: 1   Comments: 0

if x;y;z>0 prove that ((x^3 +y^3 +z^3 )/(xyz)) ≥ 2((x/(y+z)) + (y/(z+x)) + (z/(x+y)))

$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that} \\ $$$$\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} }{{xyz}}\:\geqslant\:\mathrm{2}\left(\frac{{x}}{{y}+{z}}\:+\:\frac{{y}}{{z}+{x}}\:+\:\frac{{z}}{{x}+{y}}\right) \\ $$

  Pg 706      Pg 707      Pg 708      Pg 709      Pg 710      Pg 711      Pg 712      Pg 713      Pg 714      Pg 715   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com