Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 71
Question Number 216351 Answers: 1 Comments: 0
$$\mathrm{Vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)={xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −\mathrm{5}{y}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −\mathrm{3}{yz}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\underset{\mathcal{S};{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} } {\int\int}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}=\:? \\ $$
Question Number 216350 Answers: 1 Comments: 0
$$\mathcal{S}\:\mathrm{is}\:\mathrm{the}\:\mathrm{boundary}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{surrounded}\:\mathrm{by}\:\mathrm{the}\:\mathrm{cylinder}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{9} \\ $$$$\mathrm{and}\:\mathrm{plane}\:{z}=\mathrm{0}\:,\:{z}=\mathrm{2}\:\mathrm{and} \\ $$$$\mathrm{and}\:\mathrm{vector}\:\mathrm{Field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=\mathrm{3}{y}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{yz}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{xyz}^{\mathrm{5}} \overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\underset{\mathcal{S}} {\int\int}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}=? \\ $$
Question Number 216332 Answers: 4 Comments: 0
Question Number 216324 Answers: 1 Comments: 1
Question Number 216323 Answers: 1 Comments: 2
$$\mathrm{Let}\:\mathrm{10}\geqslant{x},{y}\geqslant\mathrm{0}\:\mathrm{and}\:{x},{y}\in\mathbb{R} \\ $$$$\mathrm{Find} \\ $$$$\left.{a}\right){P}\left({x}−\mathrm{2}>{y}\right) \\ $$$$\left.{b}\right){P}\left({x}+\mathrm{2}<{y}\right) \\ $$
Question Number 216316 Answers: 2 Comments: 0
$$\mathrm{Calculer} \\ $$$$\mathrm{lim}_{\boldsymbol{\mathrm{x}}\rightarrow−\mathrm{2}} \frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}−\mathrm{2}}{\:\sqrt{\mathrm{6}+\boldsymbol{\mathrm{x}}}\:−\mathrm{2}} \\ $$
Question Number 216312 Answers: 2 Comments: 0
$$\mathrm{If}\:{ab}^{\mathrm{2}} \:+\:{bc}^{\mathrm{2}} \:+\:{ca}^{\mathrm{2}} \:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\left(\frac{{a}}{{b}}\:+\:\frac{{b}}{{c}}\right)\:+\:\left(\frac{{b}}{{c}}\:+\:\frac{{c}}{{a}}\right)\:+\:\left(\frac{{c}}{{a}}\:+\:\frac{{a}}{{b}}\right)\:+\:\mathrm{2}. \\ $$
Question Number 216296 Answers: 0 Comments: 0
Question Number 216284 Answers: 1 Comments: 1
$$\mathrm{if}\:\mathrm{i}\:\mathrm{have}\:\mathrm{7200}\:\mathrm{coin} \\ $$$$\mathrm{and}\:\mathrm{Each}\:\boldsymbol{\mathrm{A}},\boldsymbol{\mathrm{B}},\boldsymbol{\mathrm{C}}\:\mathrm{are}\:\mathrm{500}\:\mathrm{coin} \\ $$$$\mathrm{at}\:\mathrm{this}\:\mathrm{time}\:\mathrm{how}\:\mathrm{many}\:\mathrm{Should} \\ $$$$\mathrm{i}\:\mathrm{buy}\:\mathrm{each}\:\mathrm{so}\:\mathrm{that}\:\mathrm{i}\:\mathrm{can}\:\mathrm{buy}\:\mathrm{as}\:\mathrm{many} \\ $$$$\mathrm{possible}??? \\ $$
Question Number 216281 Answers: 0 Comments: 4
$$\mathrm{Prove}:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {d}\phi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{sin}\theta\:\mathrm{cos}\:\theta\right)\mathrm{sin}\theta\:{d}\theta=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {f}\left({x}\right){dx} \\ $$
Question Number 216279 Answers: 1 Comments: 3
Question Number 216274 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:{prove}\:{that}\:: \\ $$$$ \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{cos}\left(\:{n}\:\right)}{{n}}\:\left(\:\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:...+\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\right) \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:{is}\:\:\:{convergent}. \\ $$$$ \\ $$
Question Number 216270 Answers: 2 Comments: 0
$$\mathrm{If}\:\left({b}\:−\:{c}\right){x}\:+\:\left({c}\:−\:{a}\right){y}\:+\:\left({a}\:−\:{b}\right){z}\:=\:\mathrm{0}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\frac{{b}\:−\:{c}}{{y}\:−\:{z}}\:=\:\frac{{c}\:−\:{a}}{{z}\:−\:{x}}\:=\:\frac{{a}\:−\:{b}}{{x}\:−\:{y}}\:. \\ $$
Question Number 216266 Answers: 1 Comments: 0
$$\sqrt{\mathrm{2}}\:^{\sqrt{\mathrm{2}}\:^{\sqrt{\mathrm{2}}\:^{\iddots} } } =? \\ $$
Question Number 216265 Answers: 0 Comments: 0
Question Number 216263 Answers: 0 Comments: 1
Question Number 216253 Answers: 1 Comments: 1
$$\mathrm{If}\:{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{acute}\:\mathrm{angle}\:\mathrm{and} \\ $$$$\mathrm{sin}{x}\:+\:\mathrm{sin}^{\mathrm{2}} {x}\:+\:\mathrm{sin}^{\mathrm{3}} {x}\:=\:\mathrm{1}\:\mathrm{then}\:\mathrm{find} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{cot}^{\mathrm{2}} {x}. \\ $$
Question Number 216251 Answers: 0 Comments: 0
$${Find}\:{the}\:{smallest}\:{value}\:{of}\:{the}\:{expression} \\ $$$$\:\lfloor\frac{{a}+{b}+{c}}{{d}}\rfloor+\lfloor\frac{{b}+{c}+{d}}{{a}}\rfloor+\lfloor\frac{{c}+{d}+{a}}{{b}}\rfloor+\lfloor\frac{{d}+{a}+{b}}{{c}}\rfloor \\ $$$$\:\:\left({a},{b},{c},{d}\right)\in{N} \\ $$
Question Number 216245 Answers: 1 Comments: 7
Question Number 216242 Answers: 0 Comments: 0
$$\left({x}−{a}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −{a}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$${Find}\:{x},\:{given}\:{a}. \\ $$
Question Number 216239 Answers: 4 Comments: 3
Question Number 216367 Answers: 1 Comments: 0
Question Number 216363 Answers: 0 Comments: 2
Question Number 216230 Answers: 1 Comments: 0
Question Number 216226 Answers: 0 Comments: 1
$$\mathrm{please}\:\mathrm{check}\:\mathrm{the}\:\mathrm{qurstion}\:\mathrm{out}\:\mathrm{guys} \\ $$
Question Number 216219 Answers: 2 Comments: 1
Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75
Terms of Service
Privacy Policy
Contact: info@tinkutara.com