Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 71

Question Number 209415    Answers: 1   Comments: 1

Question Number 209404    Answers: 2   Comments: 0

Question Number 209398    Answers: 1   Comments: 0

Is it possible to determine the points A(x_1 , y_1 ) and B(x_2 , y_2 ) knowing that the distance between them is 2(√(29))?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{points}\:\mathrm{A}\left(\mathrm{x}_{\mathrm{1}} ,\:\mathrm{y}_{\mathrm{1}} \right)\:\mathrm{and} \\ $$$$\mathrm{B}\left(\mathrm{x}_{\mathrm{2}} ,\:\mathrm{y}_{\mathrm{2}} \right)\:\mathrm{knowing}\:\mathrm{that}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{them}\:\mathrm{is} \\ $$$$\mathrm{2}\sqrt{\mathrm{29}}? \\ $$

Question Number 209393    Answers: 1   Comments: 3

∫_0 ^(π/2) ((ln(tanx))/(1+tanx))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}\left({tanx}\right)}{\mathrm{1}+{tanx}}{dx} \\ $$

Question Number 209389    Answers: 0   Comments: 1

Cercle C de rayon R=5 petits cercles de meme rayon r Determiner Surface (ABCDEF)?

$$\mathrm{Cercle}\:\mathrm{C}\:\:\:\mathrm{de}\:\mathrm{rayon}\:\boldsymbol{\mathrm{R}}=\mathrm{5} \\ $$$$\mathrm{petits}\:\mathrm{cercles}\:\mathrm{de}\:\mathrm{meme}\:\mathrm{rayon}\:\boldsymbol{\mathrm{r}} \\ $$$$\mathrm{Determiner}\:\mathrm{Surface}\:\left(\boldsymbol{\mathrm{ABCDEF}}\right)? \\ $$

Question Number 209385    Answers: 1   Comments: 0

Question Number 209380    Answers: 0   Comments: 0

Question Number 209359    Answers: 3   Comments: 2

Question Number 209358    Answers: 1   Comments: 3

Question Number 209357    Answers: 3   Comments: 0

Evaluate : B_n = Π_(k=3) ^n (( k^( 2) −1)/(k^2 + k −6))= ?

$$ \\ $$$$\:\:\:\:\:\:{Evaluate}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\mathrm{B}_{{n}} =\:\underset{{k}=\mathrm{3}} {\overset{{n}} {\prod}}\:\frac{\:{k}^{\:\mathrm{2}} −\mathrm{1}}{{k}^{\mathrm{2}} \:+\:{k}\:−\mathrm{6}}=\:? \\ $$

Question Number 209356    Answers: 1   Comments: 0

Evaluate : lim_( n→∞) Π_(k=0) ^(n−1) cos (((2^( k) .π)/(2^( n) −1)) ) = ?

$$ \\ $$$$\:\:\:\:\:{Evaluate}\:: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}_{\:{n}\rightarrow\infty} \:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\:{cos}\:\left(\frac{\mathrm{2}^{\:{k}} .\pi}{\mathrm{2}^{\:{n}} \:−\mathrm{1}}\:\right)\:\:=\:?\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 209353    Answers: 1   Comments: 0

Question Number 209352    Answers: 2   Comments: 0

Question Number 209347    Answers: 1   Comments: 0

Question Number 209342    Answers: 1   Comments: 0

Question Number 209341    Answers: 2   Comments: 0

solve x^(log 27) + 9^(log x) = 36

$$\mathrm{solve}\:\:\:\:\mathrm{x}^{\mathrm{log}\:\mathrm{27}} \:\:+\:\:\mathrm{9}^{\mathrm{log}\:\mathrm{x}} \:\:=\:\:\:\mathrm{36} \\ $$

Question Number 209336    Answers: 1   Comments: 1

Question Number 209332    Answers: 3   Comments: 0

Question Number 209320    Answers: 0   Comments: 0

Question Number 209318    Answers: 2   Comments: 0

Question Number 209316    Answers: 1   Comments: 0

if 2n^2 +3n^3 =n! find n

$$\boldsymbol{\mathrm{if}}\:\:\mathrm{2}\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{n}}^{\mathrm{3}} =\boldsymbol{\mathrm{n}}! \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{n}} \\ $$

Question Number 209314    Answers: 0   Comments: 11

Question Number 209309    Answers: 0   Comments: 0

m , n ∈ N m ≥ 2 and n ≥ 2 p > 0 and q > 0 p + q = 1 Prove that: (1−q^n )^m + (1−p^m )^n ≥ 1

$$\mathrm{m}\:,\:\mathrm{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{m}\:\geqslant\:\mathrm{2}\:\:\:\mathrm{and}\:\:\:\mathrm{n}\:\geqslant\:\mathrm{2} \\ $$$$\mathrm{p}\:>\:\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\:>\:\mathrm{0} \\ $$$$\mathrm{p}\:+\:\mathrm{q}\:=\:\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}:\:\:\:\left(\mathrm{1}−\mathrm{q}^{\boldsymbol{\mathrm{n}}} \right)^{\boldsymbol{\mathrm{m}}} \:+\:\left(\mathrm{1}−\mathrm{p}^{\boldsymbol{\mathrm{m}}} \right)^{\boldsymbol{\mathrm{n}}} \:\geqslant\:\mathrm{1} \\ $$

Question Number 209308    Answers: 1   Comments: 0

Donner l′e^ quivalence simple de I_n =∫^( 1) _( 0) (t^n /(t^n −t+1))dt

$$\mathrm{Donner}\:\mathrm{l}'\acute {\mathrm{e}quivalence}\:\mathrm{simple} \\ $$$$\mathrm{de}\:\mathrm{I}_{\mathrm{n}} =\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \frac{{t}^{{n}} }{{t}^{{n}} −{t}+\mathrm{1}}{dt} \\ $$

Question Number 209307    Answers: 2   Comments: 3

Question Number 209304    Answers: 1   Comments: 0

  Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74      Pg 75   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com