Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 704

Question Number 145186    Answers: 0   Comments: 3

f:R→R f(x-1)+f(x+1)=(√3)∙f(x) ; ∀x∈R find f(x-1)+f(x+5)=?

$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}-\mathrm{1}\right)+{f}\left({x}+\mathrm{1}\right)=\sqrt{\mathrm{3}}\centerdot{f}\left({x}\right)\:;\:\forall{x}\in\mathbb{R} \\ $$$${find}\:\:{f}\left({x}-\mathrm{1}\right)+{f}\left({x}+\mathrm{5}\right)=? \\ $$

Question Number 145184    Answers: 0   Comments: 0

find lim_(x→0) ((sin(sh(2x))−sh(sin(3x)))/x^2 )

$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{sin}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)−\mathrm{sh}\left(\mathrm{sin}\left(\mathrm{3x}\right)\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 145183    Answers: 2   Comments: 1

find ∫_0 ^1 (dx/(((√x)+(√(x+1)))^3 ))

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\left(\sqrt{\mathrm{x}}+\sqrt{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{3}} } \\ $$

Question Number 145166    Answers: 1   Comments: 1

Question Number 145165    Answers: 1   Comments: 0

calculate Σ_(n=0) ^∞ arctan(((2n+1)/(n^4 +2n^3 +n^2 +1)))

$$\mathrm{calculate}\:\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \mathrm{arctan}\left(\frac{\mathrm{2n}+\mathrm{1}}{\mathrm{n}^{\mathrm{4}} \:+\mathrm{2n}^{\mathrm{3}} \:+\mathrm{n}^{\mathrm{2}} \:+\mathrm{1}}\right) \\ $$

Question Number 145164    Answers: 3   Comments: 0

Question Number 145163    Answers: 2   Comments: 0

Question Number 145162    Answers: 0   Comments: 1

we have z = e^(((2pi)/7)i) a = z+ z^2 + z^4 and b = z^3 + z^5 +z^6 we know a + b = −1 and 1−b=a find S = cos(((2pi)/7))+ cos(((4pi)/7)) + cos(((8pi)/7)) thanks for help

$${we}\:{have}\:{z}\:=\:{e}^{\frac{\mathrm{2}{pi}}{\mathrm{7}}{i}} \: \\ $$$${a}\:=\:{z}+\:{z}^{\mathrm{2}} \:+\:{z}^{\mathrm{4}} \:\:{and}\:{b}\:=\:{z}^{\mathrm{3}} \:+\:{z}^{\mathrm{5}} \:+{z}^{\mathrm{6}} \\ $$$${we}\:{know}\:\:{a}\:+\:{b}\:=\:−\mathrm{1}\:{and}\:\mathrm{1}−{b}={a} \\ $$$${find}\:{S}\:=\:{cos}\left(\frac{\mathrm{2}{pi}}{\mathrm{7}}\right)+\:{cos}\left(\frac{\mathrm{4}{pi}}{\mathrm{7}}\right)\:+\:{cos}\left(\frac{\mathrm{8}{pi}}{\mathrm{7}}\right) \\ $$$${thanks}\:{for}\:{help} \\ $$

Question Number 145174    Answers: 1   Comments: 0

Question Number 145193    Answers: 1   Comments: 1

Question Number 145191    Answers: 1   Comments: 0

if q≥1 and x>−1 then: (1+x)^q ≥ (1+x)^(q−1) + x ≥ 1+qx

$${if}\:\:{q}\geqslant\mathrm{1}\:\:{and}\:\:{x}>−\mathrm{1}\:\:{then}: \\ $$$$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}−\mathrm{1}} \:+\:{x}\:\geqslant\:\mathrm{1}+{qx} \\ $$

Question Number 145154    Answers: 0   Comments: 0

Question Number 145244    Answers: 0   Comments: 0

consider the circle (x−1)^2 +(y−1)^2 =2, A(1,4), B(1,−5). if P is a point on the circle such that PA+PB is maximum then prove that P,A,B are collinear points.

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{circle}\: \\ $$$$\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}, \\ $$$$\mathrm{A}\left(\mathrm{1},\mathrm{4}\right),\:\mathrm{B}\left(\mathrm{1},−\mathrm{5}\right).\:\mathrm{if}\:\mathrm{P}\:\mathrm{is}\: \\ $$$$\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{PA}+\mathrm{PB}\:\mathrm{is}\:\mathrm{maximum}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{P},\mathrm{A},\mathrm{B}\:\mathrm{are}\:\mathrm{collinear}\: \\ $$$$\mathrm{points}. \\ $$

Question Number 145136    Answers: 1   Comments: 0

Soit X une variable aleatoire de loi geometrique de parametre p∈]0.1[ calculer P({X≥4})

$${Soit}\:{X}\:{une}\:{variable}\:{aleatoire}\:{de}\:{loi} \\ $$$$\left.{geometrique}\:{de}\:{parametre}\:{p}\in\right]\mathrm{0}.\mathrm{1}\left[\right. \\ $$$${calculer}\:{P}\left(\left\{{X}\geqslant\mathrm{4}\right\}\right) \\ $$

Question Number 145134    Answers: 0   Comments: 1

On dispose de N+1 urnes.l′urne U_k contient k boules blanches et N−k boules noires.on tire successivement sans remise n boules de l′urne et on note An l′evenement ′′choisir n boules noires lors des n premiers tirages′′. Determiner P(An). on notera U_k =′′choisir l′urne k′′

$${On}\:{dispose}\:{de}\:{N}+\mathrm{1}\:{urnes}.{l}'{urne}\:{U}_{{k}} \\ $$$${contient}\:{k}\:{boules}\:{blanches}\:{et}\:{N}−{k}\:{boules} \\ $$$${noires}.{on}\:{tire}\:{successivement}\:{sans}\: \\ $$$${remise}\:{n}\:{boules}\:{de}\:{l}'{urne}\:{et}\:{on}\:{note}\: \\ $$$${An}\:{l}'{evenement}\:''{choisir}\:{n}\:{boules}\:{noires} \\ $$$${lors}\:{des}\:{n}\:{premiers}\:{tirages}''.\:{Determiner} \\ $$$${P}\left({An}\right).\:{on}\:{notera}\:{U}_{{k}} =''{choisir}\:{l}'{urne}\:{k}'' \\ $$

Question Number 145137    Answers: 2   Comments: 3

Let a≥b≥c≥0 and a^2 +b^2 +c^2 = 3. Prove that a^3 +(b+c)^3 ≤ 9

$$\mathrm{Let}\:{a}\geqslant{b}\geqslant{c}\geqslant\mathrm{0}\:\mathrm{and}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{3}} +\left({b}+{c}\right)^{\mathrm{3}} \:\leqslant\:\mathrm{9} \\ $$

Question Number 145129    Answers: 1   Comments: 0

Question Number 145119    Answers: 3   Comments: 0

(5^(log _(5/3) (5)) /3^(log _(5/3) (3)) ) =?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{5}^{\mathrm{log}\:_{\frac{\mathrm{5}}{\mathrm{3}}} \left(\mathrm{5}\right)} }{\mathrm{3}^{\mathrm{log}\:_{\frac{\mathrm{5}}{\mathrm{3}}} \left(\mathrm{3}\right)} }\:=?\: \\ $$

Question Number 145114    Answers: 2   Comments: 4

Question Number 145113    Answers: 1   Comments: 0

Question Number 145109    Answers: 1   Comments: 0

Solve the equation: cos(6x)−cos(4x)=4y^2 +4y+3

$${Solve}\:{the}\:{equation}: \\ $$$${cos}\left(\mathrm{6}{x}\right)−{cos}\left(\mathrm{4}{x}\right)=\mathrm{4}{y}^{\mathrm{2}} +\mathrm{4}{y}+\mathrm{3} \\ $$

Question Number 145108    Answers: 1   Comments: 0

Question Number 145104    Answers: 1   Comments: 0

If ((!6)/x) −!4 = !x then x =?

$$\:\mathrm{If}\:\frac{!\mathrm{6}}{\mathrm{x}}\:−!\mathrm{4}\:=\:!\mathrm{x}\:\mathrm{then}\:\mathrm{x}\:=? \\ $$

Question Number 145101    Answers: 0   Comments: 1

Question Number 145093    Answers: 1   Comments: 0

if f(ax+2b)=x and f(2a)=(b/a) find f(5b)=?

$${if}\:\:{f}\left({ax}+\mathrm{2}{b}\right)={x}\:\:{and}\:\:{f}\left(\mathrm{2}{a}\right)=\frac{{b}}{{a}} \\ $$$${find}\:\:{f}\left(\mathrm{5}{b}\right)=? \\ $$

Question Number 145082    Answers: 4   Comments: 0

Σ_(n=2) ^∞ ((1/(2n^2 −2)))=?

$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} −\mathrm{2}}\right)=? \\ $$

  Pg 699      Pg 700      Pg 701      Pg 702      Pg 703      Pg 704      Pg 705      Pg 706      Pg 707      Pg 708   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com