Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 704

Question Number 148594    Answers: 2   Comments: 2

Solve for equation: x^2 +y^2 +z^2 = xy+xz+yz ⇒ x;y;z=?

$${Solve}\:{for}\:{equation}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:{xy}+{xz}+{yz}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$

Question Number 148573    Answers: 2   Comments: 0

log_(√x) (x/y) = A ⇒ log_(√y) (y/x) = ?

$${log}_{\sqrt{\boldsymbol{{x}}}} \:\frac{{x}}{{y}}\:=\:{A}\:\:\Rightarrow\:\:{log}_{\sqrt{\boldsymbol{{y}}}} \:\frac{{y}}{{x}}\:=\:? \\ $$

Question Number 148654    Answers: 4   Comments: 0

lim_(x→1) (((1+x)/(2+x)))^((1−(√x))/(1−x)) = ?

$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{\boldsymbol{{x}}}}{\mathrm{1}−\boldsymbol{{x}}}} \:=\:? \\ $$

Question Number 148653    Answers: 0   Comments: 0

Question Number 148570    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((logx)/(x^2 +x+1))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 148569    Answers: 2   Comments: 1

Question Number 148568    Answers: 2   Comments: 0

calculate lim_(x→0) ((sh(2sinx)−sin(sh(2x)))/x^2 )

$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\:\frac{\mathrm{sh}\left(\mathrm{2sinx}\right)−\mathrm{sin}\left(\mathrm{sh}\left(\mathrm{2x}\right)\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$

Question Number 148567    Answers: 1   Comments: 0

find ∫_0 ^∞ ((x^2 logx)/((x^2 +1)^3 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{logx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }\mathrm{dx} \\ $$

Question Number 148566    Answers: 0   Comments: 0

calculate U_n =∫∫_([(1/n),n[) ((cos(x^2 +y^2 ))/(x^2 +y^2 ))dxdy and determine lim_(n→+∞) U_n nature of Σ U_n ?

$$\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[\right.\right.} \:\:\:\frac{\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\ $$

Question Number 148565    Answers: 2   Comments: 0

calculate ∫_(−∞) ^(+∞) ((x^2 dx)/((x^2 −x+1)(x^2 +x+1)))

$$\mathrm{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)} \\ $$

Question Number 148564    Answers: 1   Comments: 0

calculate ∫_1 ^2 ((logx)/(1+x))dx

$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{logx}}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$

Question Number 148559    Answers: 1   Comments: 0

Question Number 148558    Answers: 2   Comments: 0

Trouver toutes les fonctions continues f:R→R verifiant: ∀(x,y)∈R^2 , f(x+y)f(x−y)=f^2 (x)f^2 (y).. monsieur j′ai suppose^ que f est un morphisme mutiplicatif de R.. mais ca ne sort pas...

$$\mathrm{Trouver}\:\mathrm{toutes}\:\mathrm{les}\:\mathrm{fonctions}\:\mathrm{continues} \\ $$$$\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{verifiant}: \\ $$$$\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} ,\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\mathrm{f}\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{f}^{\mathrm{2}} \left(\mathrm{y}\right).. \\ $$$$\mathrm{monsieur}\:\mathrm{j}'\mathrm{ai}\:\mathrm{suppos}\acute {\mathrm{e}}\:\mathrm{que}\:\mathrm{f}\:\mathrm{est}\:\mathrm{un}\: \\ $$$$\mathrm{morphisme}\:\mathrm{mutiplicatif}\:\mathrm{de}\:\mathbb{R}..\:\mathrm{mais}\:\mathrm{ca}\:\mathrm{ne} \\ $$$$\mathrm{sort}\:\mathrm{pas}... \\ $$

Question Number 148550    Answers: 1   Comments: 2

A(0;0) ; B(−2;4) and C(−6;14) if the triangle has vertices, find the lenght of the median drawn from the vertx C

$$\boldsymbol{{A}}\left(\mathrm{0};\mathrm{0}\right)\:\:;\:\:\boldsymbol{{B}}\left(−\mathrm{2};\mathrm{4}\right)\:\:{and}\:\:\boldsymbol{{C}}\left(−\mathrm{6};\mathrm{14}\right) \\ $$$${if}\:{the}\:{triangle}\:{has}\:{vertices},\:{find}\:{the} \\ $$$${lenght}\:{of}\:{the}\:{median}\:{drawn}\:{from} \\ $$$${the}\:{vertx}\:\boldsymbol{{C}} \\ $$

Question Number 148552    Answers: 0   Comments: 2

Question Number 148546    Answers: 3   Comments: 2

lim_(x→0) (((√(x + 4)) - 2)/(sinx)) = ?

$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {{lim}}\:\frac{\sqrt{{x}\:+\:\mathrm{4}}\:-\:\mathrm{2}}{{sinx}}\:=\:? \\ $$

Question Number 148543    Answers: 4   Comments: 0

Question Number 148541    Answers: 1   Comments: 0

Question Number 148540    Answers: 1   Comments: 0

Question Number 148534    Answers: 1   Comments: 8

Question Number 148525    Answers: 2   Comments: 0

Express (((√(15))+(√(35))+(√(21))+5)/( (√3)+2(√5)+(√7))) in the form a(√(3 ))+ b(√7).

$$\:\mathrm{Express}\:\:\frac{\sqrt{\mathrm{15}}+\sqrt{\mathrm{35}}+\sqrt{\mathrm{21}}+\mathrm{5}}{\:\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{5}}+\sqrt{\mathrm{7}}}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form} \\ $$$$\:{a}\sqrt{\mathrm{3}\:}+\:{b}\sqrt{\mathrm{7}}. \\ $$

Question Number 148522    Answers: 2   Comments: 0

Question Number 148519    Answers: 0   Comments: 1

a_n =(n/(n+1)) let ε>0 be given, ∣a_m −a_n ∣=∣(m/(m+1))−(n/(n+1))∣=∣((m−n)/((m+1)(n+1)))∣=((m−n)/((m+1)(n+1))) provided m>n, ((m−n)/((m+1)(n+1)))<((m+1)/((m+1)(n+1)))=(1/(n+1))<ε. if N>((1−ε)/ε) then ∣a_m −a_n ∣<ε ∀ n,m≥N

$$ \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{be}\:\mathrm{given},\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\frac{\mathrm{m}}{\mathrm{m}+\mathrm{1}}−\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\mid=\mid\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}\mid=\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{provided} \\ $$$$\mathrm{m}>\mathrm{n},\:\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}<\frac{\mathrm{m}+\mathrm{1}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}<\epsilon.\:\mathrm{if}\:\mathrm{N}>\frac{\mathrm{1}−\epsilon}{\epsilon}\:\mathrm{then}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid<\epsilon\:\forall\:\mathrm{n},\mathrm{m}\geqslant\mathrm{N} \\ $$

Question Number 148515    Answers: 1   Comments: 0

Find the sum of the roots of the equation: x^2 - 2x - 3 ∣x - 1∣ + 3 = 0

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:-\:\mathrm{3}\:\mid{x}\:-\:\mathrm{1}\mid\:+\:\mathrm{3}\:=\:\mathrm{0} \\ $$

Question Number 148532    Answers: 1   Comments: 0

Question Number 148513    Answers: 1   Comments: 0

6 + log_2 sin15° - log_(1/2) sin75° = ?

$$\mathrm{6}\:+\:{log}_{\mathrm{2}} \:{sin}\mathrm{15}°\:-\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {sin}\mathrm{75}°\:=\:? \\ $$

  Pg 699      Pg 700      Pg 701      Pg 702      Pg 703      Pg 704      Pg 705      Pg 706      Pg 707      Pg 708   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com