Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 70
Question Number 218199 Answers: 1 Comments: 0
$${describes}\:{the}\:{rupture}\:{body}\:{onQ} \\ $$$${of}\:{polynomials}. \\ $$$$\left.{a}\left.\right)\:{X}^{\mathrm{5}} +\mathrm{1}\:\:\:\:\:\:\:\:\:{b}\right)\:{X}^{\mathrm{6}} −{X}^{\mathrm{3}} +\mathrm{1} \\ $$
Question Number 218191 Answers: 0 Comments: 0
$${exercises}\:{algebra}. \\ $$$${all}\:\:{algebraically}\:\:{closed}\:\:{fields} \\ $$$${ares}\:{finite}. \\ $$$${prouve}\:\:{it}\:. \\ $$
Question Number 218189 Answers: 0 Comments: 0
Question Number 218188 Answers: 0 Comments: 0
Question Number 218187 Answers: 1 Comments: 0
Question Number 218185 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\left(\mathrm{n}\pi\:\sqrt{\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{2n}\:+\:\mathrm{2}\centerdot\left(\mathrm{k}\:+\:\mathrm{1}\right)}\right)\:=\:? \\ $$$$\mathrm{k}\:\in\:\mathbb{Z}\:-\:\mathrm{fixed} \\ $$
Question Number 218184 Answers: 1 Comments: 0
$$−\:\mathrm{2025}\:\::\:\:\mathrm{7} \\ $$$$\mathrm{Residue}\:=\:? \\ $$
Question Number 218196 Answers: 3 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\mathrm{lim}\:_{\mathrm{n}\rightarrow\infty} \frac{\mathrm{1}}{{n}}\:\left(\:\frac{\left(\mathrm{2}{n}\right)!}{{n}!}\:\right)^{\frac{\mathrm{1}}{{n}}} =\:?\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 218195 Answers: 1 Comments: 0
$${P}=\frac{\Sigma{Fz}}{{Npil}} \\ $$
Question Number 218183 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\sqrt{\mathrm{33}^{\mathrm{2}} \:\:+\:\:\mathrm{544}^{\mathrm{2}} }\:\:+\:\:\sqrt{\mathrm{333}^{\mathrm{2}} \:\:+\:\:\mathrm{55444}^{\mathrm{2}} }\:\:=\:\:? \\ $$
Question Number 218169 Answers: 0 Comments: 0
$${P}\left(\mathrm{5},\mathrm{6}\right)=\frac{\mathrm{15}!}{\left(\mathrm{15}−\mathrm{6}\right)}\:=\:\frac{\mathrm{15}!}{\mathrm{9}!}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{15}×\mathrm{14}×\mathrm{131}×\mathrm{2}×\mathrm{11}×\mathrm{10}×\mathrm{9}×\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{9}×\mathrm{8}×\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}×\mathrm{11}×\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{3},\mathrm{603},\mathrm{600} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 218165 Answers: 2 Comments: 0
$$\lambda\:>\:\mathrm{0} \\ $$$$\mathrm{x}\:,\:\mathrm{y}\:,\:\mathrm{z}\:\in\:\mathrm{C} \\ $$$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}:\:\:\:\begin{cases}{\mathrm{xy}\:=\:\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{2}\lambda\mathrm{z}\:−\:\lambda\mathrm{x}\:−\:\lambda\mathrm{y}}\\{\mathrm{yz}\:=\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2}\lambda\mathrm{x}\:−\:\lambda\mathrm{y}\:−\:\lambda\mathrm{z}\:\:\:\:\:\:\:\:}\\{\mathrm{zx}\:=\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2}\lambda\mathrm{y}\:−\:\lambda\mathrm{z}\:−\:\lambda\mathrm{x}}\end{cases} \\ $$
Question Number 218153 Answers: 3 Comments: 0
$$\:{x}+{y}\:=\mathrm{12} \\ $$$$\:{minimum}\:{value}\:{of} \\ $$$$\:\sqrt{{x}^{\mathrm{2}} +\mathrm{4}}\:+\sqrt{{y}^{\mathrm{2}} +\mathrm{9}}\:=? \\ $$
Question Number 218150 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }{ln}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}{x}}\right){dx} \\ $$
Question Number 218162 Answers: 1 Comments: 0
$$\:\:\: \\ $$$$\:\:\:{Each}\:{edge}\:{of}\:{a}\:{parallelepiped}\:{is}\:\mathrm{1}\:{cm}\:{long}. \\ $$$$\:\:\:{At}\:{one}\:{of}\:{its}\:{vertices},\:{all}\:{three}\:{face}\:{angles} \\ $$$$\:\:\:{are}\:{acute},\:{and}\:{each}\:{measures}\:\mathrm{2}\alpha. \\ $$$$\:\:\:{Find}\:{the}\:{volume}\:{of}\:{the}\:{parallepiped}. \\ $$$$\:\:\:{Help}\:{me},\:\:{please} \\ $$
Question Number 218163 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\int\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{48}\:−\:\mathrm{2x}\:−\:\mathrm{x}^{\mathrm{2}} }}\:\mathrm{dx}\:=\:? \\ $$
Question Number 218138 Answers: 2 Comments: 0
$$\sqrt[{\mathrm{4}}]{\mathrm{629}\:−\:\mathrm{x}}\:\:+\:\:\sqrt[{\mathrm{4}}]{\mathrm{77}\:\:+\:\:\mathrm{x}}\:\:=\:\:\mathrm{8} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 222197 Answers: 1 Comments: 0
$${question}\:\mathrm{211277} \\ $$
Question Number 218129 Answers: 2 Comments: 0
$${how}\:{many}\:{different}\:{words}\:{can}\:{be} \\ $$$${formed}\:{from}\:{the}\:{word}\: \\ $$$$\boldsymbol{\mathrm{MATHEMATICS}}? \\ $$$${note}:\:\:{here}\:{a}\:{word}\:{should}\:{have}\:{at}\: \\ $$$${least}\:{two}\:{letters},\:{but}\:{mustn}'{t}\:{have}\:{a} \\ $$$${meaning}. \\ $$
Question Number 218128 Answers: 1 Comments: 0
$$\begin{array}{|c|}{?}&\hline{?}&\hline{?}&\hline{?}\\\hline\end{array}×\begin{array}{|c|}{?}\\\hline\end{array}=\mathrm{8044}\begin{array}{|c|}{?}\\\hline\end{array} \\ $$
Question Number 218119 Answers: 2 Comments: 0
$$\begin{vmatrix}{\varepsilon}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\\{\mathrm{1}}&{\varepsilon}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\varepsilon}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\varepsilon}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\varepsilon}&{\mathrm{1}}\\{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}&{\varepsilon}\end{vmatrix}=? \\ $$$$ \\ $$
Question Number 218115 Answers: 1 Comments: 0
Question Number 218148 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{sin}\left(\sqrt{\:{x}\:}\right)}{\:\sqrt[{\mathrm{4}}]{\:{e}^{{x}} }}{dx}=? \\ $$$$ \\ $$
Question Number 218103 Answers: 2 Comments: 0
$${x}+\frac{\mathrm{1}}{{x}}=\mathrm{3}\:,\:{x}^{\mathrm{5}} +\frac{\mathrm{1}}{{x}^{\mathrm{5}} }=? \\ $$
Question Number 218099 Answers: 5 Comments: 0
$${x}^{\mathrm{2}} +{x}+\mathrm{1}=\mathrm{0}\:,\:{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}=? \\ $$
Question Number 218093 Answers: 2 Comments: 0
$${Solve}\:{for}\:{x} \\ $$$$\sqrt{\mathrm{2}{x}+\mathrm{3}}\:−\sqrt{{x}−\mathrm{2}}\:=\sqrt{{x}+\mathrm{2}}\: \\ $$
Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74
Terms of Service
Privacy Policy
Contact: info@tinkutara.com