Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 70

Question Number 206452    Answers: 1   Comments: 0

Question Number 206451    Answers: 0   Comments: 0

Question Number 206449    Answers: 1   Comments: 0

solve the first order differential equation: xdy − ydx = (xy)^(1/2) dx

$${solve}\:{the}\:{first}\:{order}\:{differential} \\ $$$${equation}: \\ $$$$ \\ $$$${xdy}\:−\:{ydx}\:=\:\left({xy}\right)^{\mathrm{1}/\mathrm{2}} {dx} \\ $$

Question Number 206443    Answers: 0   Comments: 4

Question Number 206442    Answers: 1   Comments: 0

Question Number 206434    Answers: 1   Comments: 0

If tan^2 θ = 1 − x^2 then prove that secθ + tan^3 θcosecθ = (√((2 − x^2 )^3 )) .

$$\mathrm{If}\:\mathrm{tan}^{\mathrm{2}} \theta\:=\:\mathrm{1}\:−\:{x}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{sec}\theta\:+\:\mathrm{tan}^{\mathrm{3}} \theta\mathrm{cosec}\theta\:=\:\sqrt{\left(\mathrm{2}\:−\:{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:. \\ $$

Question Number 206433    Answers: 2   Comments: 0

let f:[0,∞)→R be a continuous function if lim_(n→∞ ) ∫_0 ^1 f(x+n)dx = 2 then lim_(n→∞) f(nx) = ?

$$\:\:\:\:\:\mathrm{let}\:\mathrm{f}:\left[\mathrm{0},\infty\right)\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{if} \\ $$$$\:\:\:\:\underset{\mathrm{n}\rightarrow\infty\:} {\mathrm{lim}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{f}\left(\mathrm{x}+\mathrm{n}\right)\mathrm{dx}\:=\:\mathrm{2} \\ $$$$\:\mathrm{then}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{nx}\right)\:=\:? \\ $$$$\: \\ $$

Question Number 206430    Answers: 2   Comments: 0

Question Number 206425    Answers: 1   Comments: 0

If cos𝛂 = (3/5) (0<𝛂<(𝛑/2)) Find: ((tan^2 (45° + (𝛂/2)))/3) = ?

$$\mathrm{If}\:\:\:\mathrm{cos}\boldsymbol{\alpha}\:=\:\frac{\mathrm{3}}{\mathrm{5}}\:\:\:\left(\mathrm{0}<\boldsymbol{\alpha}<\frac{\boldsymbol{\pi}}{\mathrm{2}}\right) \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{tan}^{\mathrm{2}} \:\left(\mathrm{45}°\:+\:\frac{\boldsymbol{\alpha}}{\mathrm{2}}\right)}{\mathrm{3}}\:=\:? \\ $$

Question Number 206421    Answers: 1   Comments: 0

If tanpθ = ptanθ then prove that ((sin^2 pθ)/(sin^2 θ)) = (p^2 /(1 + (p^2 − 1)sin^2 θ)) .

$$\mathrm{If}\:\mathrm{tan}{p}\theta\:=\:{p}\mathrm{tan}\theta\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{sin}^{\mathrm{2}} {p}\theta}{\mathrm{sin}^{\mathrm{2}} \theta}\:=\:\frac{{p}^{\mathrm{2}} }{\mathrm{1}\:+\:\left({p}^{\mathrm{2}} \:−\:\mathrm{1}\right)\mathrm{sin}^{\mathrm{2}} \theta}\:.\: \\ $$

Question Number 206399    Answers: 2   Comments: 1

Question Number 206396    Answers: 3   Comments: 0

Question Number 206394    Answers: 0   Comments: 1

Question Number 206393    Answers: 1   Comments: 0

find S=1+Σ_ℓ (((−)^ℓ )/ℓ)((1/ℓ)−(1/(ℓ+1))) , ℓ∈[1,∞) 1+Σ_ℓ (((−)^ℓ )/ℓ)((1/ℓ)−(1/(ℓ+1))) 1−(1−(1/2))+(1/2)((1/2)−(1/3))−(1/3)((1/3)−(1/4))+(1/4)((1/4)−(1/5))−......

$$\mathrm{find}\:\mathrm{S}=\mathrm{1}+\underset{\ell} {\sum}\:\frac{\left(−\right)^{\ell} }{\ell}\left(\frac{\mathrm{1}}{\ell}−\frac{\mathrm{1}}{\ell+\mathrm{1}}\right)\:,\:\ell\in\left[\mathrm{1},\infty\right) \\ $$$$\mathrm{1}+\underset{\ell} {\sum}\:\frac{\left(−\right)^{\ell} }{\ell}\left(\frac{\mathrm{1}}{\ell}−\frac{\mathrm{1}}{\ell+\mathrm{1}}\right) \\ $$$$\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}}\right)−...... \\ $$

Question Number 206391    Answers: 2   Comments: 0

Find: ∫_(−3) ^( −2) (∣x∣ + ∣x − 4∣) dx = ?

$$\mathrm{Find}: \\ $$$$\int_{−\mathrm{3}} ^{\:−\mathrm{2}} \:\left(\mid\mathrm{x}\mid\:+\:\mid\mathrm{x}\:−\:\mathrm{4}\mid\right)\:\mathrm{dx}\:=\:? \\ $$

Question Number 206365    Answers: 2   Comments: 4

Number series: a_3 = 2a + b − 6 a_9 = a + b + 5 a_(15) = 3a + b − 7 Find: a = ?

$$\mathrm{Number}\:\mathrm{series}: \\ $$$$\mathrm{a}_{\mathrm{3}} \:=\:\mathrm{2a}\:+\:\mathrm{b}\:−\:\mathrm{6} \\ $$$$\mathrm{a}_{\mathrm{9}} \:=\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{5} \\ $$$$\mathrm{a}_{\mathrm{15}} \:=\:\mathrm{3a}\:+\:\mathrm{b}\:−\:\mathrm{7} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{a}\:=\:? \\ $$

Question Number 206364    Answers: 2   Comments: 0

Question Number 206363    Answers: 0   Comments: 2

If 0<a<1 Compare: (1/(a−1)) , (a/(a−1)) , (1/(1−a)) , (a/(1−a)) , (a/(2a))

$$\mathrm{If}\:\:\:\mathrm{0}<\mathrm{a}<\mathrm{1} \\ $$$$\mathrm{Compare}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}−\mathrm{1}}\:\:,\:\:\frac{\mathrm{a}}{\mathrm{a}−\mathrm{1}}\:\:,\:\:\frac{\mathrm{1}}{\mathrm{1}−\mathrm{a}}\:\:,\:\:\frac{\mathrm{a}}{\mathrm{1}−\mathrm{a}}\:\:,\:\:\frac{\mathrm{a}}{\mathrm{2a}} \\ $$

Question Number 206357    Answers: 2   Comments: 0

Find: 1 + cos444° − cos84° + cot45° = ?

$$\mathrm{Find}: \\ $$$$\mathrm{1}\:+\:\mathrm{cos444}°\:−\:\mathrm{cos84}°\:+\:\mathrm{cot45}°\:=\:? \\ $$

Question Number 206355    Answers: 2   Comments: 0

if the sum of three positive real numbers is equal to their product, prove that at least one of the numbers is larger than 1.7.

$${if}\:{the}\:{sum}\:{of}\:{three}\:{positive}\:{real}\: \\ $$$${numbers}\:{is}\:{equal}\:{to}\:{their}\:{product}, \\ $$$${prove}\:{that}\:{at}\:{least}\:{one}\:{of}\:{the}\: \\ $$$${numbers}\:{is}\:{larger}\:{than}\:\mathrm{1}.\mathrm{7}. \\ $$

Question Number 206353    Answers: 0   Comments: 6

Question Number 206351    Answers: 0   Comments: 1

expression of the sequence (a_n ) defined by { ((a_0 >0 , a_1 >0)),((a_(n+2) =((2(−1)^n )/(n+2))−((2(−1)^n (2n+3))/(n+2))a_(n+1) +((n+1)/(n+2))a_n )) :}

$${expression}\:{of}\:{the}\:{sequence}\:\left({a}_{{n}} \right)\:{defined} \\ $$$${by}\: \\ $$$$\begin{cases}{{a}_{\mathrm{0}} >\mathrm{0}\:,\:{a}_{\mathrm{1}} >\mathrm{0}}\\{{a}_{{n}+\mathrm{2}} =\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{2}}−\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{3}\right)}{{n}+\mathrm{2}}{a}_{{n}+\mathrm{1}} +\frac{{n}+\mathrm{1}}{{n}+\mathrm{2}}{a}_{{n}} }\end{cases} \\ $$

Question Number 206340    Answers: 2   Comments: 0

∫_0 ^( 1) (( ln(1−x )ln(1+x ))/x)dx = Σ_(n=1) ^∞ Ω_n find : Σ_(n=1) ^∞ n Ω_n = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\:{ln}\left(\mathrm{1}−{x}\:\right){ln}\left(\mathrm{1}+{x}\:\right)}{{x}}{dx}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\Omega_{{n}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:{find}\::\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\:{n}\:\Omega_{{n}} \:=\:? \\ $$

Question Number 206339    Answers: 1   Comments: 0

E ⊆ Y ⊆ ( X , d )∣_(metric space) prove E is open in Y if and only if ∃ G (open set ) in X such that E = G ∩ Y .... (mathematical analysis (I))

$$ \\ $$$$\:\:\:\:\:{E}\:\subseteq\:{Y}\:\subseteq\:\left(\:{X}\:,\:{d}\:\right)\mid_{{metric}\:{space}} \\ $$$$\:\:\:\:{prove}\:\:{E}\:{is}\:{open}\:{in}\:{Y}\:{if}\:{and}\:\:{only}\:{if} \\ $$$$\:\:\:\:\:\:\:\exists\:{G}\:\left({open}\:{set}\:\right)\:{in}\:{X}\:\:{such}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:{E}\:=\:{G}\:\cap\:{Y}\:\:\:....\:\left({mathematical}\:{analysis}\:\left({I}\right)\right) \\ $$

Question Number 206338    Answers: 1   Comments: 0

Question Number 206367    Answers: 4   Comments: 2

Find: (1/6) + (1/(24)) + (1/(60)) + ... + ... (1/(720)) = ?

$$\mathrm{Find}: \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{24}}\:\:+\:\:\frac{\mathrm{1}}{\mathrm{60}}\:\:+\:...\:+\:...\:\:\frac{\mathrm{1}}{\mathrm{720}}\:=\:? \\ $$

  Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com