Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 70

Question Number 215874    Answers: 3   Comments: 0

If x^2 +3x+2=y^2 +5y+8, Prove that x=((−3±(√(4y^2 +20y+33)))/2).

$$\mathrm{If}\:{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}={y}^{\mathrm{2}} +\mathrm{5}{y}+\mathrm{8}, \\ $$$$\mathrm{Prove}\:\mathrm{that}\:{x}=\frac{−\mathrm{3}\pm\sqrt{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{20}{y}+\mathrm{33}}}{\mathrm{2}}. \\ $$

Question Number 215868    Answers: 0   Comments: 2

Does the force of friction increase, decrease, or remain constant with the increase in the number of car tires?

$$ \\ $$Does the force of friction increase, decrease, or remain constant with the increase in the number of car tires?

Question Number 215859    Answers: 0   Comments: 0

Question Number 215845    Answers: 2   Comments: 10

1, 3, − 1, − 3, − 7, − 21, − 25, ___, ___, ___ Next three terms??

$$\mathrm{1},\:\mathrm{3},\:−\:\mathrm{1},\:−\:\mathrm{3},\:−\:\mathrm{7},\:\:−\:\mathrm{21},\:\:−\:\mathrm{25},\:\:\:\:\:\_\_\_,\:\:\:\:\:\_\_\_,\:\:\:\:\:\_\_\_ \\ $$$$ \\ $$$$\mathrm{Next}\:\mathrm{three}\:\mathrm{terms}?? \\ $$

Question Number 215840    Answers: 2   Comments: 2

log _(24) 3= a and log _(24) 6 = (b/6) log _(√8) (b−4a)= ?

$$\:\:\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{3}=\:{a}\:\mathrm{and}\:\mathrm{log}\:_{\mathrm{24}} \:\mathrm{6}\:=\:\frac{{b}}{\mathrm{6}} \\ $$$$\:\:\:\mathrm{log}\:_{\sqrt{\mathrm{8}}} \:\left({b}−\mathrm{4}{a}\right)=\:? \\ $$

Question Number 215837    Answers: 2   Comments: 0

If b^3 + a^2 c + ac^2 = 3abc then prove that one root of ax^2 + bx + c = 0 is the square of the other one.

$$\mathrm{If}\:{b}^{\mathrm{3}} \:+\:{a}^{\mathrm{2}} {c}\:+\:{ac}^{\mathrm{2}} \:=\:\mathrm{3}{abc}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{one}\:\mathrm{root}\:\mathrm{of}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is}\:\mathrm{the}\:\mathrm{square}\: \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{one}. \\ $$

Question Number 215831    Answers: 2   Comments: 0

lim_(x→∞) (((√((x+1)^3 ))−(√((x−1)^3 )))/( (√x))) =?

$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }−\sqrt{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{3}} }}{\:\sqrt{\mathrm{x}}}\:=? \\ $$

Question Number 215828    Answers: 1   Comments: 0

Let Γ be a hyperbola with foci F_1 and F_2 , eccentricity e. M is an arbitrary point on Γ. Let x=∠MF_1 F_2 , y=∠MF_2 F_1 Prove that ((∣ cos x − cos y ∣)/(1 − cos x cos y)) = ((2e)/(e^2 +1)).

$$\mathrm{Let}\:\Gamma\:\mathrm{be}\:\mathrm{a}\:\mathrm{hyperbola}\:\mathrm{with}\:\mathrm{foci}\:{F}_{\mathrm{1}} \:\mathrm{and}\:{F}_{\mathrm{2}} ,\: \\ $$$$\mathrm{eccentricity}\:{e}.\:{M}\:\mathrm{is}\:\mathrm{an}\:\mathrm{arbitrary}\:\mathrm{point}\:\mathrm{on}\:\Gamma. \\ $$$$\mathrm{Let}\:{x}=\angle{MF}_{\mathrm{1}} {F}_{\mathrm{2}} ,\:{y}=\angle{MF}_{\mathrm{2}} {F}_{\mathrm{1}} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\frac{\mid\:\mathrm{cos}\:{x}\:−\:\mathrm{cos}\:{y}\:\mid}{\mathrm{1}\:−\:\mathrm{cos}\:{x}\:\mathrm{cos}\:{y}}\:=\:\frac{\mathrm{2}{e}}{{e}^{\mathrm{2}} +\mathrm{1}}. \\ $$

Question Number 215820    Answers: 2   Comments: 1

Question Number 215789    Answers: 1   Comments: 1

Question Number 215811    Answers: 2   Comments: 0

If α, β, γ, δ are the roots of x^4 + x^3 + x^2 + x + 1 = 0 then find α^(2021) + β^(2021) + γ^(2021) + δ^(2021) .

$$\mathrm{If}\:\alpha,\:\beta,\:\gamma,\:\delta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$${x}^{\mathrm{4}} \:+\:{x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find} \\ $$$$\alpha^{\mathrm{2021}} \:+\:\beta^{\mathrm{2021}} \:+\:\gamma^{\mathrm{2021}} \:+\:\delta^{\mathrm{2021}} \:. \\ $$

Question Number 215782    Answers: 1   Comments: 0

Question Number 215779    Answers: 0   Comments: 5

Question Number 215777    Answers: 0   Comments: 0

Question Number 215776    Answers: 1   Comments: 0

Question Number 215775    Answers: 1   Comments: 1

∫_0 ^( s) (√(1−s^2 ))(1+(√(1−((x/s))^2 ))−(√(1−x^2 )))dx

$$\:\:\underset{\mathrm{0}} {\overset{\:\:{s}} {\int}}\sqrt{\mathrm{1}−{s}^{\mathrm{2}} }\left(\mathrm{1}+\sqrt{\mathrm{1}−\left(\frac{{x}}{{s}}\right)^{\mathrm{2}} }−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$

Question Number 215774    Answers: 1   Comments: 0

let's say there are two circles with their centers A1 and A2 and their radii are equal to r1 and r2 ,let n be the distance between the centers of the two circles and n

$$ \\ $$let's say there are two circles with their centers A1 and A2 and their radii are equal to r1 and r2 ,let n be the distance between the centers of the two circles and n<r1+r2. Is there a way to find how much is the area that is formed when the two circles are overlapping ?

Question Number 215769    Answers: 1   Comments: 1

In △ABC, it is given that AC⊥CB, CD⊥AB, and CD = 12, AC = BC + 5. Please solve for the value of BC using a purely geometric method.

In △ABC, it is given that AC⊥CB, CD⊥AB, and CD = 12, AC = BC + 5. Please solve for the value of BC using a purely geometric method.

Question Number 215760    Answers: 1   Comments: 0

Let g(x) = 3f((x/3)) + f(3 − x) and f ′′(x) > 0 for all x ∈ (0, 3). If g is decreasing in (0, α) and increasing in (α, 3) then find 8α.

$$\mathrm{Let}\:{g}\left({x}\right)\:=\:\mathrm{3}{f}\left(\frac{{x}}{\mathrm{3}}\right)\:+\:{f}\left(\mathrm{3}\:−\:{x}\right)\:\mathrm{and}\: \\ $$$${f}\:''\left({x}\right)\:>\:\mathrm{0}\:\mathrm{for}\:\mathrm{all}\:{x}\:\in\:\left(\mathrm{0},\:\mathrm{3}\right).\:\mathrm{If}\:{g}\:\mathrm{is}\: \\ $$$$\mathrm{decreasing}\:\mathrm{in}\:\left(\mathrm{0},\:\alpha\right)\:\mathrm{and}\:\mathrm{increasing}\:\mathrm{in} \\ $$$$\left(\alpha,\:\mathrm{3}\right)\:\mathrm{then}\:\mathrm{find}\:\mathrm{8}\alpha. \\ $$

Question Number 215748    Answers: 1   Comments: 0

lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) −[Π_(k=1) ^n Γ((1/k))]^(1/n)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[\underset{{k}=\mathrm{1}} {\overset{{n}+\mathrm{1}} {\prod}}\Gamma\left(\frac{\mathrm{1}}{{k}}\right)\right]^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} −\left[\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\Gamma\left(\frac{\mathrm{1}}{{k}}\right)\right]^{\frac{\mathrm{1}}{{n}}} \\ $$

Question Number 215754    Answers: 1   Comments: 0

Question Number 215755    Answers: 1   Comments: 0

Tow men complet a work in 3hr, three women complet it in 5hr, and five children complet it in 10hr. if we consider among these one man, one woman and one child in how much time they will complet it together?

$${Tow}\:{men}\:{complet}\:{a}\:{work}\:{in}\:\mathrm{3}{hr},\:{three} \\ $$$${women}\:{complet}\:{it}\:{in}\:\mathrm{5}{hr},\:{and}\:{five}\: \\ $$$${children}\:{complet}\:{it}\:{in}\:\mathrm{10}{hr}.\:{if}\:{we}\:{consider} \\ $$$${among}\:{these}\:{one}\:{man},\:{one}\:{woman}\:{and}\:{one} \\ $$$${child}\:{in}\:{how}\:{much}\:{time}\:{they}\:{will} \\ $$$${complet}\:{it}\:{together}? \\ $$

Question Number 215739    Answers: 1   Comments: 0

Question Number 215737    Answers: 2   Comments: 1

Question Number 215730    Answers: 1   Comments: 0

Determine a, b, c [Lazy problem] J181-2. x^3 −6x^2 +15x−7=(x+a)^3 +bx+c J182-(1) x^3 +ax+2=(x+1)(x^2 +bx+c)

$$\boldsymbol{\mathrm{Determine}}\:\boldsymbol{{a}},\:\boldsymbol{{b}},\:\boldsymbol{{c}}\:\left[\mathrm{Lazy}\:\mathrm{problem}\right] \\ $$$$\mathrm{J181}-\mathrm{2}.\:{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} +\mathrm{15}{x}−\mathrm{7}=\left({x}+{a}\right)^{\mathrm{3}} +{bx}+{c} \\ $$$$\mathrm{J182}-\left(\mathrm{1}\right)\:{x}^{\mathrm{3}} +{ax}+\mathrm{2}=\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{bx}+{c}\right) \\ $$

Question Number 215723    Answers: 2   Comments: 0

  Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72      Pg 73      Pg 74   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com