Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 7

Question Number 224324    Answers: 1   Comments: 0

Question Number 224320    Answers: 1   Comments: 0

Question Number 224316    Answers: 0   Comments: 1

Question Number 224314    Answers: 0   Comments: 1

solve ((1−(√x)))^(1/3) =2

$${solve}\:\sqrt[{\mathrm{3}}]{\mathrm{1}−\sqrt{{x}}}=\mathrm{2} \\ $$

Question Number 224312    Answers: 1   Comments: 0

Question Number 224305    Answers: 1   Comments: 0

Question Number 224302    Answers: 1   Comments: 1

Question Number 224293    Answers: 2   Comments: 1

Question Number 224288    Answers: 1   Comments: 2

P= Π_(k=1) ^∞ (1/( (√(1+(1/k))) (1−(1/(2k))))) =?

$$ \\ $$$$\:\:\:\:\:\:\mathrm{P}=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{{k}}}\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{k}}\right)}\:=?\:\:\:\: \\ $$$$ \\ $$

Question Number 224282    Answers: 2   Comments: 1

Question Number 224261    Answers: 0   Comments: 7

If I have 10 people and I want to create pairings, so that every person is matched with every other person at least once, how many unique pairings will there be in total?

If I have 10 people and I want to create pairings, so that every person is matched with every other person at least once, how many unique pairings will there be in total?

Question Number 224255    Answers: 3   Comments: 2

Question Number 224249    Answers: 2   Comments: 3

Question Number 224248    Answers: 0   Comments: 0

∫_0 ^1 ((ln(1−x)Li_2 (1−(√x)))/x) dx

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}−\sqrt{\mathrm{x}}\right)}{\mathrm{x}}\:\:\mathrm{dx} \\ $$$$ \\ $$

Question Number 224246    Answers: 2   Comments: 1

Question Number 224234    Answers: 3   Comments: 0

(√x)+(√y)=7 (√(x+y))=5 Find (x,y).

$$\sqrt{\mathrm{x}}+\sqrt{\mathrm{y}}=\mathrm{7} \\ $$$$\sqrt{\mathrm{x}+\mathrm{y}}=\mathrm{5} \\ $$$$\mathrm{Find}\:\left(\mathrm{x},\mathrm{y}\right). \\ $$

Question Number 224233    Answers: 1   Comments: 0

Prove that ∀n≥2 e^(2n−1) −1 ≥ 2n(2n−1)

$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\geqslant\mathrm{2} \\ $$$$\mathrm{e}^{\mathrm{2n}−\mathrm{1}} −\mathrm{1}\:\geqslant\:\mathrm{2n}\left(\mathrm{2n}−\mathrm{1}\right) \\ $$

Question Number 224229    Answers: 1   Comments: 1

Question Number 224225    Answers: 0   Comments: 0

Question Number 224224    Answers: 0   Comments: 3

Question Number 224213    Answers: 1   Comments: 1

Question Number 224207    Answers: 0   Comments: 5

Question Number 224203    Answers: 0   Comments: 6

Question Number 224201    Answers: 0   Comments: 0

∫ (x^3 /(x^7 −8x^2 )) dx

$$\int\:\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{7}} −\mathrm{8x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224191    Answers: 0   Comments: 1

Question Number 224197    Answers: 2   Comments: 0

∫_0 ^∞ (e^(−𝛟x^2 ) +e^(−𝛅x^2 ) +e^(−𝛄x^2 ) ) 𝛄−euler′s mascheroni constant 𝛟−golden ratio 𝛅−silver ratio klipto−quanta♠

$$\int_{\mathrm{0}} ^{\infty} \left(\boldsymbol{\mathrm{e}}^{−\boldsymbol{\varphi\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{e}}^{−\boldsymbol{\delta\mathrm{x}}^{\mathrm{2}} } +\boldsymbol{\mathrm{e}}^{−\boldsymbol{\gamma\mathrm{x}}^{\mathrm{2}} } \right) \\ $$$$\boldsymbol{\gamma}−\boldsymbol{\mathrm{euler}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{mascheroni}}\:\boldsymbol{\mathrm{constant}} \\ $$$$\boldsymbol{\varphi}−\boldsymbol{\mathrm{golden}}\:\boldsymbol{\mathrm{ratio}} \\ $$$$\boldsymbol{\delta}−\boldsymbol{\mathrm{silver}}\:\boldsymbol{\mathrm{ratio}} \\ $$$$\boldsymbol{\mathrm{klipto}}−\boldsymbol{\mathrm{quanta}}\spadesuit \\ $$

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com