f′(x)=lim_(h→0) ((f(x+h)−f(x))/h)
lim_(h→0) ((c−c)/h)=lim_(h→0) 0=0
lim_(h→0) (((x+h)^2 −x^2 )/h)=lim_(h→0) ((2xh+h^2 )/h)=lim_(h→0) (2x+h)=2x
lim_(h→0) (((x+h)^n −x^n )/h)=lim_(h→0) ((Σ_(k=0) ^n ((n),(k) )x^(n−k) h^k −x^n )/h)=lim_(h→0) ((nx^(n−1) h+ ((n),(2) )x^(n−2) h^2 +…)/h)=lim_(h→0) (nx^(n−1) + ((n),(2) )x^(n−2) h+…)
lim_(h→0) ((e^(x+h) −e^x )/h)=e^x lim_(h→0) (e^(h−1) /h)=e^x ∙1
lim_(h→0) ((e^h −1)/h)=lim_(k→0) (k/(ln(1+k)))=lim_(k→0) (1/((ln(1+k))/k))=lim_(k→0) (1/(ln((1+k)^(1/k) ))) =(1/(ln e))=(1/1)=1
lim_(h→0) ((sin(x+h)−sin x)/h)=lim_(h→0) ((sin x cos h+cos x sin h−sin x)/h)=lim_(h→0) (sin x((cos h−1)/h)+cos x((sin h)/h))
lim_(h→0) ((sin h)/h)=1
lim_(h→0) ((cos h−1)/h)=lim_(h→0) ((−2 sin^2 (h/2))/h)=lim_(h→0) −((sin^2 (h/2))/((h/2)^2 ))∙(((h/2)^2 )/h)=lim_(h→0) −(((sin(h/2))/(h/2)))^2 ∙(h/4)=−1∙0=0
lim_(h→0) (sin x∙0+cos x∙1)=cos x
∫_a ^b f(x)dx=lim_(n→∞) Σ_(i=1) ^n f(a+i((b−a)/n))((b−a)/n)
∫_a ^b x^m dx=lim_(n→∞) Σ_(k=1) ^n (k(b/n))^m (b/n)=b^(m+1) lim_(n→∞) (1/n)Σ_(k=1) ^n ((k/n))^m
lim_(n→∞) Σ_(k=1) ^n ((k/n))^m (b/n)=lim_(n→∞) (((n^(m+1) /(m+1))+O(n^m ))/n^(m+1) )=lim_(n→∞) ((1/(m+1))+O((1/n)))=(1/(m+1))
∫_a ^b x^m dx=b^(m+1) ∙(1/(m+1))=(b^(m+1) /(m+1))
∫x^m dx=(x^(m+1) /(m+1))+C
G(x)=∫_0 ^x f(t)dt
G′(x)=lim_(h→0) ((G(x+h)−G(x))/h)=lim_(h→0) ((∫_x ^(x+h) f(t)dt)/h)=lim_(h→0) ((f(c_n )h)/h)=lim_(h→0) f(c_n )=f(x) ,c_h ∈[x,x+h]
F(b)−F(a)=[∫_a ^b f(t)dt+C]−[∫_a ^a f(t)dt+C]=∫_a ^b f(t)dt−0=∫_a ^b f(t)dt
|