Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 7

Question Number 208943    Answers: 1   Comments: 0

Question Number 208940    Answers: 1   Comments: 0

Question Number 208931    Answers: 1   Comments: 0

Question Number 208913    Answers: 3   Comments: 0

Question Number 208912    Answers: 0   Comments: 1

⋐ π

$$\:\:\:\underbrace{\Subset} \underbrace{ \cancel{} }\pi \\ $$

Question Number 208909    Answers: 0   Comments: 1

soit la fonction f(x)=x^3 +x definie sur R on note g(x)=f^(−1) (x) alors que la primitive G(x)=∫_0 ^x g(t)dt

$$\:\:\:\:\:\boldsymbol{{soit}}\:\boldsymbol{{la}}\:\boldsymbol{{fonction}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{x}}\:\:\boldsymbol{{definie}} \\ $$$$\boldsymbol{{sur}}\:\mathbb{R}\:\boldsymbol{{on}}\:\boldsymbol{{note}}\:\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{f}}^{−\mathrm{1}} \left(\boldsymbol{{x}}\right) \\ $$$$\boldsymbol{{alors}}\:\boldsymbol{{que}}\:\:\boldsymbol{{la}}\:\boldsymbol{{primitive}}\:\boldsymbol{{G}}\left(\boldsymbol{{x}}\right)=\int_{\mathrm{0}} ^{\boldsymbol{{x}}} \boldsymbol{{g}}\left(\boldsymbol{{t}}\right)\boldsymbol{{dt}} \\ $$

Question Number 208900    Answers: 0   Comments: 0

Does anyone know of an intuition behind the integral form of the remainder in Taylor′s theorem?

$${Does}\:{anyone}\:{know}\:{of}\:{an}\:{intuition} \\ $$$${behind}\:{the}\:{integral}\:{form}\:{of}\:{the} \\ $$$${remainder}\:{in}\:{Taylor}'{s}\:{theorem}? \\ $$

Question Number 208915    Answers: 1   Comments: 0

Question Number 208896    Answers: 2   Comments: 0

Question Number 208891    Answers: 0   Comments: 0

κ

$$\:\:\:\underline{\kappa} \\ $$

Question Number 208892    Answers: 2   Comments: 1

Find: (√(−16)) ∙ (√(−9)) = ?

$$\mathrm{Find}: \\ $$$$\sqrt{−\mathrm{16}}\:\:\centerdot\:\:\sqrt{−\mathrm{9}}\:\:=\:\:? \\ $$

Question Number 208880    Answers: 1   Comments: 0

Question Number 208876    Answers: 2   Comments: 7

The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛 𝙰.2044 𝙱.2032 𝙲.2040 𝙳.2036

The 𝚌a𝚕𝚎𝚗𝚍𝚊𝚛 𝚘𝚏 𝚝𝚑𝚎 𝚢𝚎𝚊𝚛 2024 𝚒𝚜 𝚝𝚑𝚎 𝚜𝚊𝚖𝚎 𝚏𝚘𝚛 𝙰.2044 𝙱.2032 𝙲.2040 𝙳.2036

Question Number 208872    Answers: 2   Comments: 0

Find the side of a triangle if the distances from an arbitrary point inside a regular triangle to its vertices are m, n and k. Help please

$$ \\ $$$$\:\:\:{Find}\:{the}\:{side}\:{of}\:{a}\:{triangle}\:{if}\:{the}\:{distances} \\ $$$$\:\:\:{from}\:{an}\:{arbitrary}\:{point}\:{inside}\:{a}\:{regular}\:{triangle}\: \\ $$$$\:\:\:{to}\:{its}\:{vertices}\:{are}\:{m},\:{n}\:{and}\:{k}. \\ $$$$\:\:{Help}\:{please} \\ $$

Question Number 208871    Answers: 3   Comments: 0

L=∫_0 ^1 (√((4−3x)/(4+5x)))dx

$${L}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{\mathrm{4}−\mathrm{3}{x}}{\mathrm{4}+\mathrm{5}{x}}}{dx} \\ $$

Question Number 208866    Answers: 1   Comments: 1

Question Number 208861    Answers: 0   Comments: 2

Question Number 208855    Answers: 1   Comments: 0

Question Number 208852    Answers: 1   Comments: 0

Question Number 208849    Answers: 0   Comments: 0

Question Number 208842    Answers: 1   Comments: 1

does the rule of odd and even functions can be applied with improper integration? I=∫_(−∞) ^∞ xe^(−x^2 ) dx while f(x)= xe^(−x^2 ) is odd then I =0

$${does}\:{the}\:{rule}\:{of}\:{odd}\:{and}\:{even}\:{functions}\: \\ $$$${can}\:{be}\:{applied}\:{with}\:{improper}\:{integration}? \\ $$$${I}=\int_{−\infty} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {dx}\: \\ $$$${while}\:\:{f}\left({x}\right)=\:{xe}^{−{x}^{\mathrm{2}} } \:{is}\:{odd} \\ $$$${then}\:{I}\:=\mathrm{0} \\ $$

Question Number 208836    Answers: 2   Comments: 0

Question Number 208828    Answers: 3   Comments: 0

Question Number 208823    Answers: 2   Comments: 0

If a+b+c=15, then find the smallest value of the expression (√(a^2 +1))+(√(b^2 +9))+(√(c^2 +16)). Help please

$$ \\ $$$$\:\:\:{If}\:{a}+{b}+{c}=\mathrm{15},\:{then}\:{find}\:{the}\:{smallest}\:{value}\: \\ $$$$\:\:\:{of}\:{the}\:{expression}\:\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}+\sqrt{{b}^{\mathrm{2}} +\mathrm{9}}+\sqrt{{c}^{\mathrm{2}} +\mathrm{16}}. \\ $$$$\:\:\:\:\:{Help}\:{please} \\ $$

Question Number 208819    Answers: 2   Comments: 0

Question Number 208816    Answers: 0   Comments: 1

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com