Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 7

Question Number 217203    Answers: 2   Comments: 0

A farmer has 100 meters of fencing and wants to enclose an rectagular field along a river. Thei rver forms one side of the rectangle so fencing is needed onlyo for the other three sides. What dimesions should the farmer chooseto maximize the enclosed area?

$$\mathrm{A}\:\mathrm{farmer}\:\mathrm{has}\:\mathrm{100}\:\mathrm{meters}\:\mathrm{of}\: \\ $$$$\mathrm{fencing}\:\mathrm{and}\:\mathrm{wants}\:\mathrm{to}\:\mathrm{enclose}\:\mathrm{an} \\ $$$$\mathrm{rectagular}\:\mathrm{field}\:\mathrm{along}\:\mathrm{a}\:\mathrm{river}.\:\mathrm{Thei} \\ $$$$\mathrm{rver}\:\mathrm{forms}\:\mathrm{one}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\: \\ $$$$\mathrm{rectangle}\:\mathrm{so}\:\mathrm{fencing}\:\mathrm{is}\:\mathrm{needed}\:\mathrm{onlyo} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{other}\:\mathrm{three}\:\mathrm{sides}.\:\mathrm{What}\: \\ $$$$\mathrm{dimesions}\:\mathrm{should}\:\mathrm{the}\:\mathrm{farmer}\: \\ $$$$\mathrm{chooseto}\:\mathrm{maximize}\:\mathrm{the}\:\mathrm{enclosed} \\ $$$$\mathrm{area}? \\ $$

Question Number 217199    Answers: 2   Comments: 1

Question Number 217198    Answers: 1   Comments: 0

Question Number 217197    Answers: 1   Comments: 0

Find: ((−32))^(1/5) + (((−3)^8 ))^(1/8) = ?

$$\mathrm{Find}: \\ $$$$\sqrt[{\mathrm{5}}]{−\mathrm{32}}\:\:+\:\:\sqrt[{\mathrm{8}}]{\left(−\mathrm{3}\right)^{\mathrm{8}} }\:\:=\:\:? \\ $$

Question Number 217244    Answers: 1   Comments: 0

Find all two-digit numbers such that when the number is divided by the sum of its digits the quotient is 4 and the remainder is 3.

$$\:\mathrm{Find}\:\mathrm{all}\:\mathrm{two}-\mathrm{digit}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{number}\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its}\:\mathrm{digits}\:\mathrm{the}\:\mathrm{quotient}\: \\ $$$$\mathrm{is}\:\mathrm{4}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{3}. \\ $$

Question Number 217262    Answers: 2   Comments: 0

Solve: ((x^2 +3x)/(x^3 −4x))−(2/(x^2 +2x))=(1/(x−2))

$${Solve}: \\ $$$$\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}}{{x}^{\mathrm{3}} −\mathrm{4}{x}}−\frac{\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{2}{x}}=\frac{\mathrm{1}}{{x}−\mathrm{2}} \\ $$

Question Number 217191    Answers: 1   Comments: 0

(a/b)+(b/a)=1

$$\:\frac{{a}}{{b}}+\frac{{b}}{{a}}=\mathrm{1} \\ $$

Question Number 217190    Answers: 1   Comments: 0

Given a_(n+1) = a_n + a_(n+2) where a_3 = 4 and a_5 = 6 find a_n .

$$\mathrm{Given}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} \:=\:\mathrm{a}_{\mathrm{n}} \:+\:\mathrm{a}_{\mathrm{n}+\mathrm{2}} \: \\ $$$$\:\:\mathrm{where}\:\mathrm{a}_{\mathrm{3}} =\:\mathrm{4}\:\mathrm{and}\:\mathrm{a}_{\mathrm{5}} =\:\mathrm{6} \\ $$$$\:\mathrm{find}\:\mathrm{a}_{\mathrm{n}} \:. \\ $$

Question Number 217186    Answers: 3   Comments: 0

((x−4051)/(2024))+((x−4050)/(2025))+((x−4049)/(2026))=3

$$\frac{{x}−\mathrm{4051}}{\mathrm{2024}}+\frac{{x}−\mathrm{4050}}{\mathrm{2025}}+\frac{{x}−\mathrm{4049}}{\mathrm{2026}}=\mathrm{3} \\ $$

Question Number 217178    Answers: 2   Comments: 0

Find: 100-99+98-97+96-95+...+2-1 = ?

$$\mathrm{Find}: \\ $$$$\mathrm{100}-\mathrm{99}+\mathrm{98}-\mathrm{97}+\mathrm{96}-\mathrm{95}+...+\mathrm{2}-\mathrm{1}\:=\:? \\ $$

Question Number 217164    Answers: 1   Comments: 0

Question Number 217163    Answers: 2   Comments: 0

If a+b=b+c=4 find: a^2 −b^2 −8c = ?

$$\mathrm{If}\:\:\:\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{c}=\mathrm{4} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} −\mathrm{8c}\:=\:? \\ $$

Question Number 217159    Answers: 3   Comments: 0

Solve for x: ((x+3)/(x−2))+((2x−5)/(x+4))=((4x+1)/(x^2 +2x−8))

$${Solve}\:{for}\:{x}: \\ $$$$\frac{{x}+\mathrm{3}}{{x}−\mathrm{2}}+\frac{\mathrm{2}{x}−\mathrm{5}}{{x}+\mathrm{4}}=\frac{\mathrm{4}{x}+\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{8}} \\ $$

Question Number 217158    Answers: 1   Comments: 0

circle= (x−3)^2 +(y−4)^2 =1 parabola= ax(x−10)=y what is the values of a where the parabola is tangent to the circle

$$\mathrm{circle}= \\ $$$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}−\mathrm{4}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{parabola}= \\ $$$${ax}\left({x}−\mathrm{10}\right)={y} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{where} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{is}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle} \\ $$$$ \\ $$

Question Number 217149    Answers: 1   Comments: 0

Question Number 217148    Answers: 2   Comments: 0

I have seen a relationship in the curve path of a thrown object at β while the total passed distance D_v and highest point had passedD_u then β = arctan(((4D_u )/D_v )) but cant find the proof. I would like to say would anyone like to proove it?then please.

$${I}\:{have}\:{seen}\:{a}\:{relationship}\:{in}\:{the}\:{curve} \\ $$$${path}\:{of}\:{a}\:{thrown}\:{object}\:{at}\:\beta\: \\ $$$${while}\:{the}\:{total}\:{passed}\:{distance}\:{D}_{{v}} \:{and} \\ $$$${highest}\:{point}\:{had}\:{passedD}_{{u}} \\ $$$${then}\:\beta\:=\:{arctan}\left(\frac{\mathrm{4}{D}_{{u}} }{{D}_{{v}} }\right) \\ $$$${but}\:{cant}\:{find}\:{the}\:{proof}. \\ $$$${I}\:{would}\:{like}\:{to}\:{say}\:{would}\:{anyone}\:{like} \\ $$$${to}\:{proove}\:{it}?{then}\:{please}. \\ $$

Question Number 217146    Answers: 1   Comments: 1

determiner le cote du care ABCD inscrit dans l elipse {(−3,+3):(−8,+8)}

$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{cote}\:\mathrm{du}\:\mathrm{care}\:\boldsymbol{\mathrm{ABCD}} \\ $$$$\mathrm{inscrit}\:\mathrm{dans}\:\mathrm{l}\:\mathrm{elipse}\:\left\{\left(−\mathrm{3},+\mathrm{3}\right):\left(−\mathrm{8},+\mathrm{8}\right)\right\} \\ $$

Question Number 217140    Answers: 1   Comments: 0

if a, b, c are three digits, abc and bca are two numbers. where abc +cba = 444, b =2. find the value of a+b+c.

if a, b, c are three digits, abc and bca are two numbers. where abc +cba = 444, b =2. find the value of a+b+c.

Question Number 217101    Answers: 0   Comments: 0

is this right when (a+bi)^(c+di) =∣a+bi∣^(c+di) e^(i(c+di)arg(a+bi)) ? I had let arg(a+bi)= { ((tan^(−1) ((b/a))),(a≥0 and b≥0)),((π−tan^(−1) (−(b/a))),(a<0 and b≥0)),((−(π−tan^(−1) ((b/a)))),(a<0 and b<0)),((−tan^(−1) ((b/a))),(a≥0 and b<0)) :} before I solved it (a+bi)^(c+di) =∣a+bi∣^(c+di) e^(i(c+di)arg(a+bi)) =∣a+bi∣^c ∣a+bi∣^di e^(ic∙arg(a+bi)) e^(−d∙arg(a+bi)) =∣a+bi∣^c (c^di )^(ln∣a+bi∣) e^(ic∙arg(a+bi)) e^(−d∙arg(a+bi))

$$\mathrm{is}\:\mathrm{this}\:\mathrm{right}\:\mathrm{when}\:\left({a}+{bi}\right)^{{c}+{di}} =\mid{a}+{bi}\mid^{{c}+{di}} {e}^{{i}\left({c}+{di}\right)\mathrm{arg}\left({a}+{bi}\right)} ? \\ $$$$\mathrm{I}\:\mathrm{had}\:\mathrm{let}\:\mathrm{arg}\left({a}+{bi}\right)=\begin{cases}{\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)}&{{a}\geqslant\mathrm{0}\:\mathrm{and}\:{b}\geqslant\mathrm{0}}\\{\pi−\mathrm{tan}^{−\mathrm{1}} \left(−\frac{{b}}{{a}}\right)}&{{a}<\mathrm{0}\:\mathrm{and}\:{b}\geqslant\mathrm{0}}\\{−\left(\pi−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)\right)}&{{a}<\mathrm{0}\:\mathrm{and}\:{b}<\mathrm{0}}\\{−\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\right)}&{{a}\geqslant\mathrm{0}\:\mathrm{and}\:{b}<\mathrm{0}}\end{cases}\:\mathrm{before}\:\mathrm{I}\:\mathrm{solved}\:\mathrm{it} \\ $$$$\left({a}+{bi}\right)^{{c}+{di}} =\mid{a}+{bi}\mid^{{c}+{di}} {e}^{{i}\left({c}+{di}\right)\mathrm{arg}\left({a}+{bi}\right)} \\ $$$$=\mid{a}+{bi}\mid^{{c}} \mid{a}+{bi}\mid^{{di}} {e}^{{ic}\centerdot\mathrm{arg}\left({a}+{bi}\right)} {e}^{−{d}\centerdot\mathrm{arg}\left({a}+{bi}\right)} \\ $$$$=\mid{a}+{bi}\mid^{{c}} \left({c}^{{di}} \right)^{\mathrm{ln}\mid{a}+{bi}\mid} {e}^{{ic}\centerdot\mathrm{arg}\left({a}+{bi}\right)} {e}^{−{d}\centerdot\mathrm{arg}\left({a}+{bi}\right)} \\ $$

Question Number 217122    Answers: 1   Comments: 0

∫ ((√(cos 2x))/(cos x)) dx =?

$$\:\:\:\:\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{cos}\:\mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 217121    Answers: 0   Comments: 0

Question Number 217137    Answers: 0   Comments: 3

Please do not post totally meaningless questions/answers. If you dont know the answer leave it unanswered. If some has ideas they will post either partially or full answers. Do not post meaningless answers that cancel operator or function from numerator/denominator.

$$ \\ $$$$\mathrm{Please}\:\mathrm{do}\:\mathrm{not}\:\mathrm{post}\:\mathrm{totally}\:\mathrm{meaningless} \\ $$$$\mathrm{questions}/\mathrm{answers}. \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{dont}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answer} \\ $$$$\mathrm{leave}\:\mathrm{it}\:\mathrm{unanswered}.\:\mathrm{If}\:\mathrm{some}\:\mathrm{has} \\ $$$$\mathrm{ideas}\:\mathrm{they}\:\mathrm{will}\:\mathrm{post}\:\mathrm{either}\:\mathrm{partially} \\ $$$$\mathrm{or}\:\mathrm{full}\:\mathrm{answers}. \\ $$$$\mathrm{Do}\:\mathrm{not}\:\mathrm{post}\:\mathrm{meaningless}\:\mathrm{answers}\:\mathrm{that} \\ $$$$\mathrm{cancel}\:\mathrm{operator}\:\mathrm{or}\:\mathrm{function}\:\mathrm{from} \\ $$$$\mathrm{numerator}/\mathrm{denominator}. \\ $$

Question Number 217132    Answers: 0   Comments: 0

Find all integers n> 1 such that n divides 2^(n−1) + 3^(n−1) .

$$ \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{integers}\:\:\mathrm{n}>\:\mathrm{1}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\mathrm{n}\:\:\mathrm{divides}\:\:\mathrm{2}^{\mathrm{n}−\mathrm{1}} \:+\:\mathrm{3}^{\mathrm{n}−\mathrm{1}} . \\ $$

Question Number 217130    Answers: 0   Comments: 0

Prove that for every integer n≥2 the number n^4 + 4^n is composite.

$$ \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\:\mathrm{integer}\:\:\mathrm{n}\geqslant\mathrm{2}\:\:\mathrm{the}\:\mathrm{number}\:\:\mathrm{n}^{\mathrm{4}} +\:\mathrm{4}^{{n}} \:\:\mathrm{is} \\ $$$$\mathrm{c}{o}\mathrm{mposite}. \\ $$

Question Number 217129    Answers: 1   Comments: 2

prove that if an integer n is not divisible by 2 or 3 then n^2 ≡1(mod 24)

$${prove}\:{that}\:{if}\:{an}\:{integer}\:{n}\:{is}\:{not}\:{divisible}\:{by}\:\mathrm{2}\:{or}\:\mathrm{3} \\ $$$$\:{then}\:{n}^{\mathrm{2}} \equiv\mathrm{1}\left({mod}\:\mathrm{24}\right) \\ $$

Question Number 217088    Answers: 1   Comments: 0

show that ∫_( n) ^( n + 1) ln(t) dt ≤ ln(n + (1/2)) Given u_n = (((4n)^n n!e^(−n) )/((2n)!)), ∀n ≥ 1 prove, using the preceding question that u_n is decreasing and convergent

$${show}\:{that}\:\int_{\:{n}} ^{\:{n}\:+\:\mathrm{1}} {ln}\left({t}\right)\:{dt}\:\leqslant\:{ln}\left({n}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${Given}\:{u}_{{n}} \:=\:\frac{\left(\mathrm{4}{n}\right)^{{n}} {n}!{e}^{−{n}} }{\left(\mathrm{2}{n}\right)!},\:\forall{n}\:\geqslant\:\mathrm{1} \\ $$$${prove},\:{using}\:{the}\:{preceding}\:{question}\:{that} \\ $$$${u}_{{n}} \:{is}\:{decreasing}\:{and}\:{convergent} \\ $$

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com