Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 7

Question Number 227002    Answers: 0   Comments: 2

merry christmas to all of you guys!

$${merry}\:{christmas}\:{to}\:{all}\:{of}\:{you}\:{guys}! \\ $$

Question Number 226995    Answers: 3   Comments: 0

Question Number 226994    Answers: 4   Comments: 0

Question Number 226983    Answers: 1   Comments: 0

Question Number 226981    Answers: 0   Comments: 0

Question Number 226991    Answers: 4   Comments: 0

Question Number 226975    Answers: 0   Comments: 0

Where are the sans serif letters?

$$ \\ $$Where are the sans serif letters?

Question Number 226973    Answers: 0   Comments: 0

lim_(n→+∞) (((sin (1/n))/(n+(1/1))) + ((sin (2/n))/(n+(1/2))) + ... + ((sin (n/n))/(n+(1/n))))=?

$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\left(\frac{\mathrm{sin}\:\frac{\mathrm{1}}{{n}}}{{n}+\frac{\mathrm{1}}{\mathrm{1}}}\:+\:\frac{\mathrm{sin}\:\frac{\mathrm{2}}{{n}}}{{n}+\frac{\mathrm{1}}{\mathrm{2}}}\:+\:...\:+\:\frac{\mathrm{sin}\:\frac{{n}}{{n}}}{{n}+\frac{\mathrm{1}}{{n}}}\right)=? \\ $$

Question Number 226953    Answers: 1   Comments: 0

If I_n =∫(x^2 +a^2 )^n dx Show that I_n =(1/(2n+1))x(x^2 +a^2 )^n +2na^2 I_(n−1)

$${If}\:{I}_{{n}} =\int\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}} {dx}\: \\ $$$${Show}\:{that} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{x}\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}} +\mathrm{2}{na}^{\mathrm{2}} {I}_{{n}−\mathrm{1}} \: \\ $$

Question Number 226952    Answers: 4   Comments: 0

Question Number 226958    Answers: 2   Comments: 0

3^x =x^9 x^2 = ..?

$$\:\:\:\mathrm{3}^{\mathrm{x}} =\mathrm{x}^{\mathrm{9}} \: \\ $$$$\:\:\:\:\mathrm{x}^{\mathrm{2}} =\:..? \\ $$

Question Number 226914    Answers: 2   Comments: 0

Question Number 226919    Answers: 4   Comments: 0

Question Number 226912    Answers: 1   Comments: 0

Question Number 226910    Answers: 2   Comments: 0

Question Number 226908    Answers: 1   Comments: 1

Question Number 226907    Answers: 1   Comments: 0

two small balls are hung from a point (same mass, same charge and rope length are same) the two strings make an angle 30^0 when immersed in a liquid of ρ=0.8g/cc the angle remains same.ρ_(ball) =1.6g/cc what is the value of κ(dielectric const.)of the liquid

$${two}\:{small}\:{balls}\:{are}\:{hung}\:{from}\:{a}\:{point} \\ $$$$\left({same}\:{mass},\:{same}\:{charge}\:{and}\:{rope}\:{length}\:{are}\:{same}\right) \\ $$$${the}\:{two}\:{strings}\:{make}\:{an}\:{angle}\:\mathrm{30}^{\mathrm{0}} \\ $$$${when}\:{immersed}\:{in}\:{a}\:{liquid}\:{of}\:\rho=\mathrm{0}.\mathrm{8}{g}/{cc} \\ $$$${the}\:{angle}\:{remains}\:{same}.\rho_{{ball}} =\mathrm{1}.\mathrm{6}{g}/{cc} \\ $$$${what}\:{is}\:{the}\:{value}\:{of}\:\kappa\left({dielectric}\:{const}.\right){of} \\ $$$${the}\:{liquid} \\ $$

Question Number 226898    Answers: 0   Comments: 0

Reduce to canonical form: sin^2 (x)(∂^2 u/∂x^2 )+sin^2 (2x)(∂^2 u/(∂x∂y))+cos^2 (x)(∂^2 u/∂y^2 )=0

$$\mathrm{Reduce}\:\mathrm{to}\:\mathrm{canonical}\:\mathrm{form}: \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}^{\mathrm{2}} }+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}\partial\mathrm{y}}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 226882    Answers: 1   Comments: 0

Question Number 226880    Answers: 1   Comments: 0

Question Number 226879    Answers: 2   Comments: 0

Question Number 226878    Answers: 1   Comments: 0

Question Number 226877    Answers: 3   Comments: 0

Question Number 226901    Answers: 2   Comments: 1

if x+y=2 with x, y >0, find the minimum of x+(√(x^2 +3y^2 )).

$${if}\:{x}+{y}=\mathrm{2}\:{with}\:{x},\:{y}\:>\mathrm{0},\:{find}\:{the} \\ $$$${minimum}\:{of}\:{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }. \\ $$

Question Number 226855    Answers: 2   Comments: 0

Question Number 226850    Answers: 4   Comments: 0

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com