Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 7

Question Number 226372    Answers: 2   Comments: 1

Question Number 226366    Answers: 1   Comments: 0

compute the double integral ∫_(y=0) ^1 ∫_(x=0) ^2 x^2 dxdy and ∫_(y=0) ^1 ∫_(x=0) ^2 y^2 dxdy

$$\boldsymbol{\mathrm{compute}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{double}}\:\boldsymbol{\mathrm{integral}} \\ $$$$\int_{\boldsymbol{\mathrm{y}}=\mathrm{0}} ^{\mathrm{1}} \int_{\boldsymbol{\mathrm{x}}=\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}}\:\boldsymbol{\mathrm{and}}\:\:\int_{\boldsymbol{\mathrm{y}}=\mathrm{0}} ^{\mathrm{1}} \int_{\boldsymbol{\mathrm{x}}=\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{y}}^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}} \\ $$$$ \\ $$

Question Number 226362    Answers: 1   Comments: 0

Question Number 226371    Answers: 0   Comments: 0

calculate the volume of a sphere using double integral

$${calculate}\:{the}\:{volume}\:{of}\:{a}\:{sphere} \\ $$$${using}\:{double}\:{integral} \\ $$

Question Number 226340    Answers: 0   Comments: 0

Question Number 226322    Answers: 0   Comments: 2

Question Number 226338    Answers: 1   Comments: 0

Question Number 226339    Answers: 1   Comments: 0

Question Number 226334    Answers: 2   Comments: 2

Question Number 226336    Answers: 0   Comments: 0

Question Number 226337    Answers: 4   Comments: 0

Question Number 226278    Answers: 1   Comments: 0

Question Number 226292    Answers: 2   Comments: 0

Question Number 226291    Answers: 1   Comments: 0

Question Number 226290    Answers: 1   Comments: 0

Question Number 226289    Answers: 0   Comments: 0

Question Number 226249    Answers: 1   Comments: 1

Question Number 226246    Answers: 2   Comments: 5

Question Number 226282    Answers: 0   Comments: 1

$$ \\ $$

Question Number 226293    Answers: 2   Comments: 1

A hemispherical bowl of radius R with maimum water in it without needing to spill is spinning with the content at constant ω. Find volume of water in bowl.

$${A}\:{hemispherical}\:{bowl}\:{of}\:{radius}\:{R} \\ $$$$\:{with}\:{maimum}\:{water}\:{in}\:{it}\:{without} \\ $$$${needing}\:{to}\:{spill}\:{is}\:{spinning}\:{with}\:{the} \\ $$$${content}\:{at}\:{constant}\:\omega.\:{Find}\:{volume} \\ $$$${of}\:{water}\:{in}\:{bowl}. \\ $$$$ \\ $$

Question Number 226217    Answers: 2   Comments: 2

Question Number 226178    Answers: 1   Comments: 0

Question Number 226177    Answers: 0   Comments: 0

Question Number 226176    Answers: 1   Comments: 1

Question Number 226173    Answers: 1   Comments: 0

Question Number 226194    Answers: 3   Comments: 0

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com