Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 698

Question Number 149621    Answers: 1   Comments: 0

if 2^x =3^y =7^z =((42))^(1/3) find (1/x)+(1/y)+(1/z)=?

$$\mathrm{if}\:\:\:\mathrm{2}^{\boldsymbol{{x}}} =\mathrm{3}^{\boldsymbol{{y}}} =\mathrm{7}^{\boldsymbol{{z}}} =\sqrt[{\mathrm{3}}]{\mathrm{42}} \\ $$$$\mathrm{find}\:\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=? \\ $$

Question Number 149608    Answers: 4   Comments: 0

.....K=∫(1/(1+sin^2 (x)))dx......

$$.....\mathrm{K}=\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}...... \\ $$

Question Number 149600    Answers: 1   Comments: 0

Question Number 149599    Answers: 0   Comments: 0

Question Number 149598    Answers: 2   Comments: 0

Suppose that sec x + tan x = ((22)/7) cosec x + cot x = (m/n) (m/n) is in the lowest term . Find m + n .

$${Suppose}\:\:{that}\:\: \\ $$$$\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:=\:\frac{\mathrm{22}}{\mathrm{7}} \\ $$$$\mathrm{cosec}\:{x}\:+\:\mathrm{cot}\:{x}\:=\:\frac{{m}}{{n}} \\ $$$$\frac{{m}}{{n}}\:\:{is}\:\:{in}\:\:{the}\:\:{lowest}\:\:{term}\:. \\ $$$${Find}\:\:{m}\:+\:{n}\:. \\ $$

Question Number 149596    Answers: 1   Comments: 0

Without L′Hopital lim_(x→π/7) ((sin x sin 2x sin 3x−((√7)/8))/(x−(π/7))) =?

$$\:\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\pi/\mathrm{7}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{sin}\:\mathrm{3x}−\frac{\sqrt{\mathrm{7}}}{\mathrm{8}}}{\mathrm{x}−\frac{\pi}{\mathrm{7}}}\:=? \\ $$

Question Number 149595    Answers: 2   Comments: 1

Question Number 149588    Answers: 2   Comments: 2

{ ((x + (1/y) = 2)),((y + (1/z) = 2)),((z + (1/x) = 2)) :} ⇒ x;y;z=?

$$\begin{cases}{{x}\:+\:\frac{\mathrm{1}}{{y}}\:=\:\mathrm{2}}\\{{y}\:+\:\frac{\mathrm{1}}{{z}}\:=\:\mathrm{2}}\\{{z}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}}\end{cases}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$

Question Number 149700    Answers: 2   Comments: 1

Question Number 149585    Answers: 1   Comments: 0

if x;y;z>0 and x^2 +y^2 +z^2 =3 then: Σ ((x^2 +y^2 )/((2x^2 +y^2 )(y^2 +2x^2 ))) ≥ (2/3)

$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{and}\:\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{3}\:\:{then}: \\ $$$$\Sigma\:\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\left(\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\left({y}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} \right)}\:\geqslant\:\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Question Number 149569    Answers: 1   Comments: 0

lim_(x→∞) (((5x + 6)/(2x - 9)))^x^2 = ?

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5x}\:+\:\mathrm{6}}{\mathrm{2x}\:-\:\mathrm{9}}\right)^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} } =\:? \\ $$

Question Number 149568    Answers: 1   Comments: 0

solve the equation: 20z[z] - 21{z} = 2021 where {∗} is GIF and {z} = z - [z]

$${solve}\:{the}\:{equation}: \\ $$$$\mathrm{20}{z}\left[{z}\right]\:-\:\mathrm{21}\left\{{z}\right\}\:=\:\mathrm{2021} \\ $$$${where}\:\left\{\ast\right\}\:{is}\:{GIF}\:\:{and}\:\:\left\{{z}\right\}\:=\:{z}\:-\:\left[{z}\right] \\ $$

Question Number 149567    Answers: 0   Comments: 5

if q is prime number fixed, then solve for natural numbers the equation: (1/q) = (1/x) + (1/y) - (1/z)

$${if}\:\:\boldsymbol{{q}}\:\:{is}\:{prime}\:{number}\:{fixed},\:{then} \\ $$$${solve}\:{for}\:{natural}\:{numbers}\:{the}\:{equation}: \\ $$$$\frac{\mathrm{1}}{{q}}\:=\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{y}}\:-\:\frac{\mathrm{1}}{{z}} \\ $$

Question Number 152596    Answers: 2   Comments: 0

Question Number 149551    Answers: 1   Comments: 0

Question Number 149547    Answers: 1   Comments: 0

Evaluate lim_(x→(π/7)) ((8cos xcos 2xcos 4x+1)/(x−(π/7)))

$$\:\mathrm{Evaluate}\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{7}}} {\mathrm{lim}}\frac{\mathrm{8cos}\:\mathrm{xcos}\:\mathrm{2xcos}\:\mathrm{4x}+\mathrm{1}}{\mathrm{x}−\frac{\pi}{\mathrm{7}}} \\ $$

Question Number 149534    Answers: 2   Comments: 0

Question Number 149532    Answers: 1   Comments: 0

on realise une suite infinie d′epreuves independantes.chaque epreuve resulte en un succes avec la probabilite p∈]0;1[ ou un echec avec la probabilite q=1−p.soit A_n l′evement “obenir au moins un succes au cours des premieres epreuves.” determiner P(A_n )

$${on}\:{realise}\:{une}\:{suite}\:{infinie}\:{d}'{epreuves} \\ $$$${independantes}.{chaque}\:{epreuve}\:{resulte}\:{en} \\ $$$$\left.{un}\:{succes}\:{avec}\:{la}\:{probabilite}\:{p}\in\right]\mathrm{0};\mathrm{1}\left[\:{ou}\:{un}\right. \\ $$$${echec}\:{avec}\:{la}\:{probabilite}\:{q}=\mathrm{1}−{p}.{soit}\:{A}_{{n}} \\ $$$${l}'{evement}\:``{obenir}\:{au}\:{moins}\:{un}\:{succes}\:{au} \\ $$$${cours}\:{des}\:{premieres}\:{epreuves}.''\:{determiner} \\ $$$${P}\left({A}_{{n}} \right) \\ $$

Question Number 149527    Answers: 1   Comments: 1

Question Number 149516    Answers: 1   Comments: 0

Ω = ∫_( 0) ^( 3) ((√((x + 2)^2 - 8x))) dx = ?

$$\Omega\:=\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{3}} {\int}}\:\left(\sqrt{\left({x}\:+\:\mathrm{2}\right)^{\mathrm{2}} \:-\:\mathrm{8}{x}}\right)\:{dx}\:=\:? \\ $$

Question Number 149510    Answers: 1   Comments: 7

Question Number 149505    Answers: 3   Comments: 2

lim_(n→∞) (((n + 3)/(n + 1)))^n = ?

$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{n}\:+\:\mathrm{3}}{\mathrm{n}\:+\:\mathrm{1}}\right)^{\mathrm{n}} =\:? \\ $$

Question Number 149503    Answers: 2   Comments: 0

Calcular: 3sin∙(150 - 𝛂) - 2cos∙(60 - 𝛂) = (1/2)

$$\mathrm{Calcular}: \\ $$$$\mathrm{3sin}\centerdot\left(\mathrm{150}\:-\:\boldsymbol{\alpha}\right)\:-\:\mathrm{2cos}\centerdot\left(\mathrm{60}\:-\:\boldsymbol{\alpha}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 149498    Answers: 2   Comments: 0

∫((px+q)/( (√(x^2 +r^2 ))))

$$ \\ $$$$\int\frac{{px}+{q}}{\:\sqrt{{x}^{\mathrm{2}} +{r}^{\mathrm{2}} }} \\ $$

Question Number 149586    Answers: 0   Comments: 0

$$ \\ $$$$ \\ $$

Question Number 149485    Answers: 2   Comments: 0

proof that 1=2??

$$\mathrm{proof}\:\mathrm{that}\:\mathrm{1}=\mathrm{2}?? \\ $$

  Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700      Pg 701      Pg 702   

Terms of Service

Privacy Policy

Contact: [email protected]