| z^3 −z=c
z^4 −z^2 =cz
let z=x+q
x^4 +4qx^3 +6q^2 x^2 +4q^3 x+q^4
−x^2 −2qx−q^2 −cx−cq=0
⇒
x^4 +4qx^3 +(6q^2 −1)x^2 +
(4q^3 −2q−c)x+q^4 −q^2 −cq=0
let q^2 =1/6 ⇒
x^4 +4qx^3 −(((4q)/3)+c)x−(5/(36))−cq=0
≡ (x^2 +mx+k)(x^2 +sx+h)=0
⇒ m+s=4q
h+k+ms=0
mh+ks=−(((4q)/3)+c)
kh=−(5/(36))−cq
h, k= −((ms)/2)±(√(((m^2 s^2 )/4)+(5/(36))+cq))
m(−((ms)/2)+D)+s(−((ms)/2)−D)
+((4q)/3)+c=0
(m−s)D−((ms)/2)(4q)+((4q)/3)+c=0
now let′s assume ms=p
& since m+s=4q
(m−s)^2 =(8/3)−4p
⇒ ((8/3)−4p)((p^2 /4)+(5/(36))+cq)
=(2pq−((4q)/3)−c)^2
p^3 +((5/9)+4cq−(8/9)−4cq)p
+(((4q)/3)+c)^2 −(8/3)((5/(36))+cq)=0
⇒ p^3 −(p/3)+((14)/(27))=0
D_0 =((7/(27)))^2 −((1/9))^3
....
|