Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 698

Question Number 148262    Answers: 0   Comments: 0

if x>−1 ; [q]=n≥2 ; [∗]-GIF then: (1+x)^q ≥ (1+nx)(1+(q-n)x) ≥ 1+qx

$${if}\:\:{x}>−\mathrm{1}\:\:;\:\:\left[{q}\right]={n}\geqslant\mathrm{2}\:\:;\:\:\left[\ast\right]-{GIF}\:\:{then}: \\ $$$$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\left(\mathrm{1}+{nx}\right)\left(\mathrm{1}+\left({q}-{n}\right){x}\right)\:\geqslant\:\mathrm{1}+{qx} \\ $$

Question Number 148268    Answers: 1   Comments: 0

Question Number 148257    Answers: 2   Comments: 0

Question Number 148312    Answers: 1   Comments: 0

calculer la differentielle de y=log(x) teste: sachant que log(35)=1,54407, calculer log(3501) NB: on rappelle que (1/(log(10)))=log(e)=0,43429..

$${calculer}\:{la}\:{differentielle}\:{de}\: \\ $$$${y}={log}\left({x}\right) \\ $$$${teste}:\:{sachant}\:{que}\:{log}\left(\mathrm{35}\right)=\mathrm{1},\mathrm{54407}, \\ $$$${calculer}\:{log}\left(\mathrm{3501}\right) \\ $$$${NB}:\:{on}\:{rappelle}\:{que}\:\frac{\mathrm{1}}{{log}\left(\mathrm{10}\right)}={log}\left({e}\right)=\mathrm{0},\mathrm{43429}.. \\ $$

Question Number 148250    Answers: 0   Comments: 0

Question Number 148249    Answers: 2   Comments: 1

Question Number 148242    Answers: 2   Comments: 0

Question Number 148241    Answers: 2   Comments: 0

f:x→((x^2 +x−1)/(x−1)) where x≠1 find the range of the function

$$\:{f}:{x}\rightarrow\frac{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{{x}−\mathrm{1}}\:{where}\:{x}\neq\mathrm{1} \\ $$$$\:{find}\:{the}\:{range}\:{of}\:{the}\:{function} \\ $$

Question Number 148237    Answers: 1   Comments: 0

f(t)=sin(pt) fourier serie..

$${f}\left({t}\right)={sin}\left({pt}\right)\:{fourier}\:{serie}.. \\ $$

Question Number 148231    Answers: 0   Comments: 1

∫_0 ^1 x^dx =?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{dx}} =? \\ $$

Question Number 148229    Answers: 1   Comments: 1

Question Number 148226    Answers: 1   Comments: 0

Question Number 148222    Answers: 2   Comments: 0

Question Number 148221    Answers: 1   Comments: 0

Question Number 148219    Answers: 1   Comments: 0

The expansion of (1+px+qx^2 )^8 = 1+8x+52x^2 +kx^3 +... What are the values of p ,q and k

$$\mathrm{The}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{px}+\mathrm{qx}^{\mathrm{2}} \right)^{\mathrm{8}} \: \\ $$$$=\:\mathrm{1}+\mathrm{8x}+\mathrm{52x}^{\mathrm{2}} +\mathrm{kx}^{\mathrm{3}} +... \\ $$$$\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{p}\:,\mathrm{q}\:\mathrm{and}\:\mathrm{k} \\ $$

Question Number 148216    Answers: 0   Comments: 0

Question Number 148213    Answers: 1   Comments: 0

f(z)=((cosz)/(1−sin(z^2 ))) find residus of f

$$\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{cosz}}{\mathrm{1}−\mathrm{sin}\left(\mathrm{z}^{\mathrm{2}} \right)} \\ $$$$\mathrm{find}\:\mathrm{residus}\:\mathrm{of}\:\mathrm{f} \\ $$

Question Number 148211    Answers: 1   Comments: 0

Question Number 148207    Answers: 0   Comments: 1

any book on lucas and fibonacci sequence?

$$\mathrm{any}\:\mathrm{book}\:\mathrm{on}\:\mathrm{lucas}\:\mathrm{and}\:\mathrm{fibonacci}\:\mathrm{sequence}? \\ $$

Question Number 148206    Answers: 0   Comments: 0

Question Number 148205    Answers: 0   Comments: 0

Question Number 148204    Answers: 0   Comments: 0

Question Number 148203    Answers: 2   Comments: 0

Σ_(n=1) ^∞ ((8/(n^2 +n)))=?

$$\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{8}}{{n}^{\mathrm{2}} +{n}}\right)=? \\ $$

Question Number 148193    Answers: 0   Comments: 0

Question Number 148189    Answers: 1   Comments: 1

Question Number 148174    Answers: 2   Comments: 0

find the residue of f(z)=((sin(z))/(cos(z^3 )−1))

$${find}\:{the}\:{residue}\:{of}\:\:{f}\left({z}\right)=\frac{{sin}\left({z}\right)}{{cos}\left({z}^{\mathrm{3}} \right)−\mathrm{1}} \\ $$

  Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700      Pg 701      Pg 702   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com