Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 698

Question Number 149239    Answers: 1   Comments: 0

lim_(x→a^+ ) (((√x)−(√a) −(√(x−a)))/( (√(x^2 −a^2 )))) =?

$$\:\:\:\underset{{x}\rightarrow\mathrm{a}^{+} } {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{a}}\:−\sqrt{\mathrm{x}−\mathrm{a}}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=?\: \\ $$

Question Number 149238    Answers: 0   Comments: 1

z^3 −z=c z^4 −z^2 =cz let z=x+q x^4 +4qx^3 +6q^2 x^2 +4q^3 x+q^4 −x^2 −2qx−q^2 −cx−cq=0 ⇒ x^4 +4qx^3 +(6q^2 −1)x^2 + (4q^3 −2q−c)x+q^4 −q^2 −cq=0 let q^2 =1/6 ⇒ x^4 +4qx^3 −(((4q)/3)+c)x−(5/(36))−cq=0 ≡ (x^2 +mx+k)(x^2 +sx+h)=0 ⇒ m+s=4q h+k+ms=0 mh+ks=−(((4q)/3)+c) kh=−(5/(36))−cq h, k= −((ms)/2)±(√(((m^2 s^2 )/4)+(5/(36))+cq)) m(−((ms)/2)+D)+s(−((ms)/2)−D) +((4q)/3)+c=0 (m−s)D−((ms)/2)(4q)+((4q)/3)+c=0 now let′s assume ms=p & since m+s=4q (m−s)^2 =(8/3)−4p ⇒ ((8/3)−4p)((p^2 /4)+(5/(36))+cq) =(2pq−((4q)/3)−c)^2 p^3 +((5/9)+4cq−(8/9)−4cq)p +(((4q)/3)+c)^2 −(8/3)((5/(36))+cq)=0 ⇒ p^3 −(p/3)+((14)/(27))=0 D_0 =((7/(27)))^2 −((1/9))^3 ....

$${z}^{\mathrm{3}} −{z}={c} \\ $$$${z}^{\mathrm{4}} −{z}^{\mathrm{2}} ={cz} \\ $$$${let}\:\:{z}={x}+{q} \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{qx}^{\mathrm{3}} +\mathrm{6}{q}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{4}{q}^{\mathrm{3}} {x}+{q}^{\mathrm{4}} \\ $$$$−{x}^{\mathrm{2}} −\mathrm{2}{qx}−{q}^{\mathrm{2}} −{cx}−{cq}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{qx}^{\mathrm{3}} +\left(\mathrm{6}{q}^{\mathrm{2}} −\mathrm{1}\right){x}^{\mathrm{2}} + \\ $$$$\:\:\:\:\left(\mathrm{4}{q}^{\mathrm{3}} −\mathrm{2}{q}−{c}\right){x}+{q}^{\mathrm{4}} −{q}^{\mathrm{2}} −{cq}=\mathrm{0} \\ $$$${let}\:\:{q}^{\mathrm{2}} =\mathrm{1}/\mathrm{6}\:\:\Rightarrow \\ $$$${x}^{\mathrm{4}} +\mathrm{4}{qx}^{\mathrm{3}} −\left(\frac{\mathrm{4}{q}}{\mathrm{3}}+{c}\right){x}−\frac{\mathrm{5}}{\mathrm{36}}−{cq}=\mathrm{0} \\ $$$$\equiv\:\left({x}^{\mathrm{2}} +{mx}+{k}\right)\left({x}^{\mathrm{2}} +{sx}+{h}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{m}+{s}=\mathrm{4}{q} \\ $$$$\:\:\:\:\:\:{h}+{k}+{ms}=\mathrm{0} \\ $$$$\:\:\:\:\:\:{mh}+{ks}=−\left(\frac{\mathrm{4}{q}}{\mathrm{3}}+{c}\right) \\ $$$$\:\:\:\:\:\:{kh}=−\frac{\mathrm{5}}{\mathrm{36}}−{cq} \\ $$$${h},\:{k}=\:−\frac{{ms}}{\mathrm{2}}\pm\sqrt{\frac{{m}^{\mathrm{2}} {s}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{36}}+{cq}} \\ $$$${m}\left(−\frac{{ms}}{\mathrm{2}}+{D}\right)+{s}\left(−\frac{{ms}}{\mathrm{2}}−{D}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{4}{q}}{\mathrm{3}}+{c}=\mathrm{0} \\ $$$$\left({m}−{s}\right){D}−\frac{{ms}}{\mathrm{2}}\left(\mathrm{4}{q}\right)+\frac{\mathrm{4}{q}}{\mathrm{3}}+{c}=\mathrm{0} \\ $$$${now}\:{let}'{s}\:{assume}\:\:{ms}={p} \\ $$$$\&\:{since}\:\:{m}+{s}=\mathrm{4}{q} \\ $$$$\left({m}−{s}\right)^{\mathrm{2}} =\frac{\mathrm{8}}{\mathrm{3}}−\mathrm{4}{p} \\ $$$$\Rightarrow\:\:\left(\frac{\mathrm{8}}{\mathrm{3}}−\mathrm{4}{p}\right)\left(\frac{{p}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{36}}+{cq}\right) \\ $$$$\:\:\:\:\:=\left(\mathrm{2}{pq}−\frac{\mathrm{4}{q}}{\mathrm{3}}−{c}\right)^{\mathrm{2}} \\ $$$$\:\:{p}^{\mathrm{3}} +\left(\frac{\mathrm{5}}{\mathrm{9}}+\mathrm{4}{cq}−\frac{\mathrm{8}}{\mathrm{9}}−\mathrm{4}{cq}\right){p} \\ $$$$\:\:\:\:\:\:\:+\left(\frac{\mathrm{4}{q}}{\mathrm{3}}+{c}\right)^{\mathrm{2}} −\frac{\mathrm{8}}{\mathrm{3}}\left(\frac{\mathrm{5}}{\mathrm{36}}+{cq}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:{p}^{\mathrm{3}} −\frac{{p}}{\mathrm{3}}+\frac{\mathrm{14}}{\mathrm{27}}=\mathrm{0} \\ $$$${D}_{\mathrm{0}} =\left(\frac{\mathrm{7}}{\mathrm{27}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{9}}\right)^{\mathrm{3}} \\ $$$$.... \\ $$

Question Number 149237    Answers: 1   Comments: 0

Question Number 149234    Answers: 1   Comments: 0

(x/2) + log_2 (x + 12) = 6 ⇒ x = ?

$$\frac{{x}}{\mathrm{2}}\:+\:{log}_{\mathrm{2}} \left({x}\:+\:\mathrm{12}\right)\:=\:\mathrm{6} \\ $$$$\Rightarrow\:\boldsymbol{{x}}\:=\:? \\ $$

Question Number 149233    Answers: 0   Comments: 0

Question Number 149219    Answers: 2   Comments: 0

Question Number 149212    Answers: 1   Comments: 0

if x;y;z>0 and xyz=1 prove that: (x^4 /(x+yz)) + (y^4 /(y+zx)) + (z^4 /(z+xy)) ≥ (3/2)

$${if}\:\:\:{x};{y};{z}>\mathrm{0}\:\:\:{and}\:\:\:{xyz}=\mathrm{1}\:\:\:{prove}\:{that}: \\ $$$$\frac{{x}^{\mathrm{4}} }{{x}+{yz}}\:+\:\frac{{y}^{\mathrm{4}} }{{y}+{zx}}\:+\:\frac{{z}^{\mathrm{4}} }{{z}+{xy}}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Question Number 149192    Answers: 1   Comments: 0

Question Number 149191    Answers: 2   Comments: 0

......calculus..... ∫_0 ^( ∞) ((sech(πx))/(1+4x^( 2) )) dx=? .........m.n...

$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:......{calculus}..... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sech}\left(\pi{x}\right)}{\mathrm{1}+\mathrm{4}{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$$$\:.........{m}.{n}... \\ $$

Question Number 149189    Answers: 2   Comments: 1

Question Number 149188    Answers: 2   Comments: 0

f(x) = ax^(99) + bx^(77) + cx^(55) + 975 f(−975) = 1000 find f(975) = ?

$${f}\left({x}\right)\:=\:{ax}^{\mathrm{99}} \:+\:{bx}^{\mathrm{77}} \:+\:{cx}^{\mathrm{55}} \:+\:\mathrm{975} \\ $$$${f}\left(−\mathrm{975}\right)\:=\:\mathrm{1000} \\ $$$${find}\:\:\:{f}\left(\mathrm{975}\right)\:=\:? \\ $$

Question Number 149187    Answers: 0   Comments: 2

Question Number 149186    Answers: 0   Comments: 0

Question Number 149184    Answers: 1   Comments: 0

Ω =lim_(x→1) ((tan (√(3x+2))−tan (√(2x+3)))/(tan (√(5x+4))−tan (√(4x+5)))) =?

$$\:\:\:\Omega\:=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{tan}\:\sqrt{\mathrm{3x}+\mathrm{2}}−\mathrm{tan}\:\sqrt{\mathrm{2x}+\mathrm{3}}}{\mathrm{tan}\:\sqrt{\mathrm{5x}+\mathrm{4}}−\mathrm{tan}\:\sqrt{\mathrm{4x}+\mathrm{5}}}\:=? \\ $$

Question Number 149180    Answers: 1   Comments: 0

Question Number 149205    Answers: 1   Comments: 0

∫_(−∞) ^0 (t/((1−t)^2 ))dt

$$\int_{−\infty} ^{\mathrm{0}} \frac{{t}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }{dt} \\ $$

Question Number 149204    Answers: 0   Comments: 0

Question Number 149208    Answers: 1   Comments: 0

If loga and logb are the roots of the equation mx^2 +nx+s=0, fimd in terms of m, n and s the value of logab.

$$\mathrm{If}\:\mathrm{loga}\:\mathrm{and}\:\mathrm{logb}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{mx}^{\mathrm{2}} +\mathrm{nx}+\mathrm{s}=\mathrm{0},\:\mathrm{fimd}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{m},\:\mathrm{n}\:\mathrm{and} \\ $$$$\mathrm{s}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{logab}. \\ $$

Question Number 149171    Answers: 2   Comments: 0

2^(2x ) + 4^(3x) = 128 ⇒x=?

$$\:\mathrm{2}^{\mathrm{2x}\:} \:+\:\mathrm{4}^{\mathrm{3x}} \:=\:\mathrm{128}\:\Rightarrow\mathrm{x}=? \\ $$

Question Number 149163    Answers: 0   Comments: 0

Q[(√3)]/ker f define the circular element of the unit

$${Q}\left[\sqrt{\mathrm{3}}\right]/{ker}\:{f}\:\:{define}\:{the}\:{circular} \\ $$$${element}\:{of}\:{the}\:{unit} \\ $$

Question Number 149157    Answers: 1   Comments: 0

∫_(1/2) ^2 (1/x)cosec^(101) (x−(1/x)) dx=?

$$\underset{\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\mathrm{2}} {\int}}\frac{\mathrm{1}}{{x}}\mathrm{cosec}\:^{\mathrm{101}} \left({x}−\frac{\mathrm{1}}{{x}}\right)\:{dx}=? \\ $$

Question Number 149156    Answers: 0   Comments: 0

if ∫(dx/( (((1+x^2 )^(1012) (2+x^2 )^(3012) ))^(1/(2012)) ))=(α/(2β))(1−f(x))^(β/α) then find α,β,f(x)

$${if}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{2012}}]{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{1012}} \left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{3012}} }}=\frac{\alpha}{\mathrm{2}\beta}\left(\mathrm{1}−{f}\left({x}\right)\right)^{\frac{\beta}{\alpha}} \\ $$$${then}\:{find}\:\alpha,\beta,{f}\left({x}\right) \\ $$

Question Number 149155    Answers: 0   Comments: 0

find the coefficient of x^(50) in the (1+x)^(1000) +2x(1+x)^(999) +3x^2 (1+x)^(998) +...∞

$${find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{50}} \:{in}\:{the}\: \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1000}} +\mathrm{2}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{999}} +\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{998}} +...\infty\: \\ $$

Question Number 149151    Answers: 4   Comments: 0

lim_(n→∞) (1/( (√n))) (1 + (1/( (√2))) + (1/( (√3))) + ... + (1/( (√n)))) = ?

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:...\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\:=\:? \\ $$

Question Number 149150    Answers: 1   Comments: 0

∫ ln (cosx) dx = ?

$$\int\:{ln}\:\left({cosx}\right)\:{dx}\:=\:? \\ $$

Question Number 149142    Answers: 1   Comments: 0

if z + ∣z∣ = 1 + (√3) i find 𝛟 = ?

$${if}\:\:\:{z}\:+\:\mid{z}\mid\:=\:\mathrm{1}\:+\:\sqrt{\mathrm{3}}\:\boldsymbol{{i}} \\ $$$${find}\:\:\:\boldsymbol{\varphi}\:=\:? \\ $$

  Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700      Pg 701      Pg 702   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com