Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 698
Question Number 148532 Answers: 1 Comments: 0
Question Number 148513 Answers: 1 Comments: 0
$$\mathrm{6}\:+\:{log}_{\mathrm{2}} \:{sin}\mathrm{15}°\:-\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {sin}\mathrm{75}°\:=\:? \\ $$
Question Number 148505 Answers: 1 Comments: 0
Question Number 148502 Answers: 3 Comments: 0
$$\mathrm{let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2} \\ $$$$\mathrm{simplify}\:\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \:\:\left(\alpha^{\mathrm{k}} \:+\beta^{\mathrm{k}} \right)\:\:\mathrm{and}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \left(\:\frac{\mathrm{1}}{\alpha^{\mathrm{k}} }+\frac{\mathrm{1}}{\beta^{\mathrm{k}} }\right) \\ $$
Question Number 148501 Answers: 2 Comments: 0
$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\left\{\mathrm{z}\in\mathrm{C}\:/\mathrm{z}^{\mathrm{n}} \:=\mathrm{1}\right\}\:\:\mathrm{simplify} \\ $$$$\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\mathrm{w}^{\mathrm{p}} \:\:\:\:\:\:\:\:\mathrm{with}\:\mathrm{w}\in\mathrm{U}_{\mathrm{n}} \:\:\: \\ $$$$\mathrm{and}\:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \left(\mathrm{2w}\:+\mathrm{1}\right)^{\mathrm{p}} \\ $$
Question Number 148494 Answers: 1 Comments: 0
$$\:\:\:\frac{\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2008}} }{\left(\mathrm{7}+\mathrm{5}\sqrt{\mathrm{2}}\right)^{\mathrm{1338}} }\:+\:\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)\:=\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{x}\right) \\ $$$$\:\mathrm{x}=?\: \\ $$
Question Number 148489 Answers: 1 Comments: 0
Question Number 148482 Answers: 0 Comments: 2
Question Number 148498 Answers: 1 Comments: 0
$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 148467 Answers: 2 Comments: 0
Question Number 148466 Answers: 2 Comments: 0
$$\mathrm{xdx}+\mathrm{ydy}=\mathrm{xdy}−\mathrm{ydx} \\ $$
Question Number 148454 Answers: 2 Comments: 0
$${sin}^{\mathrm{6}} \boldsymbol{\alpha}\:+\:{co}^{\mathrm{6}} \boldsymbol{\alpha}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\:\Rightarrow\:\:\mathrm{6}{cos}\mathrm{4}\boldsymbol{\alpha}=? \\ $$$$ \\ $$
Question Number 148453 Answers: 3 Comments: 0
$$\frac{\left({n}\:+\:\mathrm{1}\right)!}{{n}!}\:=\:\mathrm{38}\:\:\Rightarrow\:\:{n}=? \\ $$
Question Number 148452 Answers: 2 Comments: 0
$$\underset{\:\mathrm{1}} {\overset{\:\mathrm{4}} {\int}}\mathrm{2}{sin}^{\mathrm{2}} {x}\:{dx}\:+\:\underset{\:\mathrm{1}} {\overset{\:\mathrm{4}} {\int}}\left(\mathrm{1}+{cos}\mathrm{2}{x}\right){dx}\:=\:? \\ $$
Question Number 148447 Answers: 1 Comments: 0
$$\mathrm{sin}\left({x}\right)={a},\:{a}\in \\ $$
Question Number 148446 Answers: 0 Comments: 2
$$\mathrm{Soit}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{et}\:\alpha\:\mathrm{4}\:\mathrm{nombres}\:\mathrm{rationnels} \\ $$$$\mathrm{telque}\:\sqrt[{\mathrm{3}}]{\alpha}\:\mathrm{est}\:\mathrm{irrationnel}.. \\ $$$$\mathrm{Demontrer}\:\mathrm{que}\:: \\ $$$$\left(\mathrm{a}\sqrt[{\mathrm{3}}]{\alpha}+\mathrm{b}\sqrt[{\mathrm{3}}]{\alpha}=\mathrm{c}\right)\:\Rightarrow\:\left(\mathrm{a}=\mathrm{b}=\mathrm{c}\right).. \\ $$
Question Number 148445 Answers: 1 Comments: 3
$${if}\:\:\:{cos}\boldsymbol{\alpha}\:=\:\sqrt{\boldsymbol{{a}}} \\ $$$${find}\:\:\:\mathrm{5}\:-\:\mathrm{6}{cos}\mathrm{2}\boldsymbol{\alpha}\:+\:{cos}\mathrm{4}\boldsymbol{\alpha}\:=\:? \\ $$
Question Number 148443 Answers: 0 Comments: 0
$${Can}\:{i}\:{use}\:{this}\:{app}\:\:{on}\:{PC} \\ $$$${to}\:{tinkutara} \\ $$
Question Number 148441 Answers: 0 Comments: 0
$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{\mathrm{m}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}\left(\mathrm{m}−\mathrm{1}\right)}{\left(\mathrm{nk}+\mathrm{m}−\mathrm{1}\right)\left(\mathrm{nk}+\mathrm{m}\right)}=? \\ $$
Question Number 148439 Answers: 3 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}+\mathrm{2}}\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{6}}−\mathrm{x}^{\mathrm{2}} }{\mathrm{x}−\mathrm{2}}\:=? \\ $$
Question Number 148483 Answers: 1 Comments: 0
$$\mathrm{Soit}\:\mathrm{f}\:\mathrm{une}\:\mathrm{fonction}\:\mathrm{continu}\:\mathrm{sur}\:\mathbb{R} \\ $$$$\mathrm{et}\:\mathrm{non}\:\mathrm{identiquement}\:\mathrm{nulle}, \\ $$$$\forall\:\mathrm{x},\mathrm{x}'\in\mathbb{R},\:\mathrm{f}\left(\mathrm{x}−\mathrm{x}'\right)+\mathrm{f}\left(\mathrm{x}+\mathrm{x}'\right)=\mathrm{2f}\left(\mathrm{x}\right)\mathrm{f}\left(\mathrm{x}'\right) \\ $$$$\mathrm{montrer}\:\mathrm{que}: \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{et}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{f}\left(−\mathrm{x}\right).. \\ $$
Question Number 148428 Answers: 1 Comments: 0
Question Number 148427 Answers: 2 Comments: 0
Question Number 148421 Answers: 0 Comments: 0
$$\underset{\boldsymbol{{x}}\rightarrow\infty} {{lim}}\frac{{cos}\left({x}\right)\:-\:{x}!}{\mathrm{3}^{\boldsymbol{{x}}} \:-\:\mathrm{4}^{\boldsymbol{{x}}} }\:=\:? \\ $$
Question Number 148418 Answers: 1 Comments: 0
$${Find}\:{the}\:{natural}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${x}^{\mathrm{2}} \:-\:\mathrm{51}{y}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$
Question Number 148417 Answers: 0 Comments: 0
Pg 693 Pg 694 Pg 695 Pg 696 Pg 697 Pg 698 Pg 699 Pg 700 Pg 701 Pg 702
Terms of Service
Privacy Policy
Contact: info@tinkutara.com