Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 696
Question Number 149120 Answers: 0 Comments: 0
Question Number 149113 Answers: 1 Comments: 0
$$\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}{\mathrm{7}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$
Question Number 149112 Answers: 0 Comments: 2
$$\:\varphi\:=\:\int\:\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)\mathrm{tan}\:\mathrm{3x}\:\mathrm{tan}\:\left(\mathrm{2x}−\frac{\pi}{\mathrm{3}}\right)\:\mathrm{dx}\:=? \\ $$
Question Number 149107 Answers: 1 Comments: 0
Question Number 149106 Answers: 0 Comments: 0
Question Number 149116 Answers: 1 Comments: 0
$$\:\mathrm{If}\:\mathrm{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{3}×\mathrm{3}\:\mathrm{matrix}\:\mathrm{where}\:\mathrm{det}\left(\mathrm{A}\right)=−\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{will}\:\mathrm{be}\:\mathrm{det}\left(\mathrm{3A}^{\mathrm{2}} \mathrm{A}^{−\mathrm{1}} \right)? \\ $$$$\mathrm{knowing}\:\mathrm{that}\:\mathrm{A}^{−\mathrm{1}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse} \\ $$$$\mathrm{of}\:\mathrm{A}\: \\ $$
Question Number 149100 Answers: 1 Comments: 0
Question Number 149092 Answers: 0 Comments: 0
Question Number 149085 Answers: 0 Comments: 0
Question Number 149081 Answers: 1 Comments: 0
Question Number 149080 Answers: 0 Comments: 0
Question Number 149068 Answers: 1 Comments: 0
Question Number 149060 Answers: 1 Comments: 0
$${if}\:\:\:\mathrm{4}{z}\sqrt{{z}}\:−\:\mathrm{11}\sqrt{{z}}\:=\:\mathrm{5} \\ $$$${find}\:\:\:\mathrm{2}{z}\:−\:\sqrt{{z}}\:=\:? \\ $$
Question Number 149045 Answers: 1 Comments: 0
$$\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid\:=\:\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid\:=\:\mathrm{4}\:\:\:{and}\:\:\:{cos}\boldsymbol{\alpha}\:=\:\mathrm{60}° \\ $$$${find}\:\:\:\overset{\rightarrow} {\boldsymbol{{a}}}\:\centerdot\:\overset{\rightarrow} {\boldsymbol{{b}}}\:=\:? \\ $$
Question Number 149043 Answers: 1 Comments: 3
Question Number 149042 Answers: 1 Comments: 0
$$\mathrm{100}\boldsymbol{{x}}^{\boldsymbol{{lg}}\left(\boldsymbol{{x}}\right)} \:=\:\boldsymbol{{x}}^{\mathrm{3}} \:\:\:\Rightarrow\:\:\:\boldsymbol{{x}}\:=\:? \\ $$
Question Number 149041 Answers: 1 Comments: 3
$$\sqrt{{x}\:-\:\mathrm{3}\:+\:\mathrm{2}\sqrt{{x}\:-\:\mathrm{4}}}\:−\:\sqrt{{x}\:+\:\mathrm{5}\:-\:\mathrm{6}\sqrt{{x}\:-\:\mathrm{2}}}\:=\mathrm{2} \\ $$$$\Rightarrow\:\boldsymbol{{x}}\:=\:? \\ $$
Question Number 149040 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} +{xy}=\mathrm{4}{x}}\\{{y}^{\mathrm{2}} +{xy}=\mathrm{4}{y}}\end{cases}\:\:\:\Rightarrow\:\:{log}_{\mathrm{16}} ^{\left(\boldsymbol{{x}}_{\mathrm{1}} +\boldsymbol{{y}}_{\mathrm{1}} +\boldsymbol{{x}}_{\mathrm{2}} +\boldsymbol{{y}}_{\mathrm{2}} \right)} \:=\:? \\ $$
Question Number 149061 Answers: 0 Comments: 0
$$\mathrm{factorise}\:\:\:\:\mathrm{4}/\mathrm{5}^{\mathrm{x}} +\mathrm{1} \\ $$
Question Number 149036 Answers: 1 Comments: 0
$${if}\:\:\:{x};{y};{z}>\mathrm{0}\:\:\:{and}\:\:\:{xyz}=\mathrm{8}\:\:\:{prove}\:{that}: \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+\:\mathrm{8}}\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} \:+\:\mathrm{8}}\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{8}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 149031 Answers: 2 Comments: 0
Question Number 149030 Answers: 0 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\underset{\mathrm{5}^{\mathrm{x}} +\mathrm{1}} {−}} {\mathrm{4}}\:\:\:\:\mathrm{x}=\mathrm{0},\mathrm{1},\mathrm{2}.....\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{moment}\: \\ $$$$\mathrm{generating}\:\mathrm{function} \\ $$
Question Number 149077 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\:\left(\:\mathrm{1}+\:\sqrt{{x}}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=? \\ $$$$\:.....{m}.{n}..... \\ $$
Question Number 149025 Answers: 1 Comments: 3
$${Solve}\:{for}\:{equation}: \\ $$$${cos}^{\mathrm{3}} \left({x}\right)\:-\:{sin}^{\mathrm{3}} \left({x}\right)\:+\:\mathrm{1} \\ $$
Question Number 149024 Answers: 2 Comments: 0
Question Number 149023 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{tsint}}{\mathrm{1}+{cos}^{\mathrm{2}} {t}}{dt}=\overset{\frac{\pi}{\mathrm{4}}} {\int}_{\mathrm{0}} \frac{{tcost}}{\mathrm{1}+{sin}^{\mathrm{2}} {t}}{dt} \\ $$$${true}\:{or}\:{false}\:?? \\ $$
Pg 691 Pg 692 Pg 693 Pg 694 Pg 695 Pg 696 Pg 697 Pg 698 Pg 699 Pg 700
Terms of Service
Privacy Policy
Contact: info@tinkutara.com