Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 696

Question Number 148971    Answers: 0   Comments: 0

2^(2+x) −3^(2x+y) =−11 and 2^(x+1) +3^(3y) =11 find x and y

$$\:\mathrm{2}^{\mathrm{2}+{x}} −\mathrm{3}^{\mathrm{2}{x}+{y}} =−\mathrm{11} \\ $$$${and}\:\:\:\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{3}^{\mathrm{3}{y}} =\mathrm{11} \\ $$$$\:{find}\:\:{x}\:{and}\:\:{y} \\ $$

Question Number 148932    Answers: 1   Comments: 0

(((b+c)^2 )/(bc))l_a ^2 +(((a+b)^2 )/(ab))l_c ^2 +(((a+c)^2 )/(ac))l_b ^2 =(a+b+c)^2 l_b ,l_a ,l_c −bissekterissa prove

$$\frac{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{bc}}}\boldsymbol{{l}}_{\boldsymbol{{a}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\boldsymbol{{ab}}}\boldsymbol{{l}}_{\boldsymbol{{c}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{ac}}}\boldsymbol{{l}}_{\boldsymbol{{b}}} ^{\mathrm{2}} =\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{l}}_{\boldsymbol{{b}}} ,\boldsymbol{{l}}_{\boldsymbol{{a}}} ,\boldsymbol{{l}}_{\boldsymbol{{c}}} −\boldsymbol{{bissekterissa}} \\ $$$$\boldsymbol{{prove}} \\ $$

Question Number 148939    Answers: 0   Comments: 0

(B^3 −2B^2 −4B+8)y=0 solve the differencial equation

$$\:\left({B}^{\mathrm{3}} −\mathrm{2}{B}^{\mathrm{2}} −\mathrm{4}{B}+\mathrm{8}\right){y}=\mathrm{0} \\ $$$${solve}\:{the}\:{differencial}\:{equation} \\ $$

Question Number 148923    Answers: 0   Comments: 0

Question Number 148917    Answers: 1   Comments: 0

Question Number 148915    Answers: 1   Comments: 0

Question Number 148914    Answers: 0   Comments: 2

Solve the equation 2^x + x = 11 with Omega Function .

$${Solve}\:\:{the}\:\:{equation} \\ $$$$\:\:\:\mathrm{2}^{{x}} \:+\:{x}\:=\:\mathrm{11} \\ $$$${with}\:\:{Omega}\:\:{Function}\:. \\ $$

Question Number 148911    Answers: 1   Comments: 0

f:[−3, 0]→[7, 22] f(x) = x^2 - 2x + 7 find f^( −1) (x) = ?

$${f}:\left[−\mathrm{3},\:\mathrm{0}\right]\rightarrow\left[\mathrm{7},\:\mathrm{22}\right] \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:+\:\mathrm{7} \\ $$$${find}\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)\:=\:? \\ $$

Question Number 148961    Answers: 0   Comments: 0

(L∙(√(x^2 +y^2 ))+n_0 )sin(atan(df(x)/dx))=c f(x)=?

$$\left({L}\centerdot\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{n}_{\mathrm{0}} \right){sin}\left({atan}\left({df}\left({x}\right)/{dx}\right)\right)={c} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 148960    Answers: 1   Comments: 0

find the resideo f(z)=(z/(z^n −1))

$${find}\:{the}\:{resideo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$

Question Number 148953    Answers: 0   Comments: 4

Question Number 148951    Answers: 2   Comments: 0

Let complex number z=(a+cos θ)+(2a−sin θ)i . If ∣z∣ ≤2 for any θ∈R then the range of real number a is ___

$${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$

Question Number 148947    Answers: 1   Comments: 0

615 + x^2 = 2^y ; x;y∈N ⇒ x;y = ?

$$\mathrm{615}\:+\:{x}^{\mathrm{2}} \:=\:\mathrm{2}^{\boldsymbol{{y}}} \:\:\:;\:\:\:{x};{y}\in\mathbb{N} \\ $$$$\Rightarrow\:{x};{y}\:=\:? \\ $$

Question Number 148946    Answers: 1   Comments: 0

Sum to n term: (1/(1.2.3)) + (1/(4.5.6)) + (1/(7.8.9)) + ... to n.

$$\mathrm{Sum}\:\mathrm{to}\:\:\mathrm{n}\:\:\mathrm{term}:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}.\mathrm{3}}\:\:\:+\:\:\frac{\mathrm{1}}{\mathrm{4}.\mathrm{5}.\mathrm{6}}\:\:\:+\:\:\:\frac{\mathrm{1}}{\mathrm{7}.\mathrm{8}.\mathrm{9}}\:\:+\:\:...\:\:\:\mathrm{to}\:\:\mathrm{n}. \\ $$

Question Number 148944    Answers: 0   Comments: 0

find residuo f(z)=(z/(z^n −1))

$${find}\:{residuo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$

Question Number 148942    Answers: 0   Comments: 0

M=∫_0 ^(+∞) ((x^(2n) lnx)/(x^2 +1))dx

$${M}=\int_{\mathrm{0}} ^{+\infty} \frac{{x}^{\mathrm{2}{n}} {lnx}}{{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$$ \\ $$

Question Number 148905    Answers: 1   Comments: 0

Question Number 149796    Answers: 0   Comments: 4

Question Number 148901    Answers: 0   Comments: 2

Question Number 148895    Answers: 0   Comments: 2

Question Number 148890    Answers: 1   Comments: 0

if x + (1/x) = (√3) find x^(18) + x^(12) + x^6 + 1 = ?

$${if}\:\:\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\sqrt{\mathrm{3}} \\ $$$${find}\:\:\:{x}^{\mathrm{18}} \:+\:{x}^{\mathrm{12}} \:+\:{x}^{\mathrm{6}} \:+\:\mathrm{1}\:=\:? \\ $$

Question Number 148887    Answers: 2   Comments: 0

Ω=∫_( 1) ^( ∞) (((√x) ln x)/(x^2 + 1)) dx = ?

$$\Omega=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\sqrt{{x}}\:{ln}\:{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:{dx}\:=\:? \\ $$

Question Number 148886    Answers: 1   Comments: 0

Question Number 148884    Answers: 1   Comments: 0

Question Number 148881    Answers: 1   Comments: 0

Question Number 148880    Answers: 1   Comments: 0

  Pg 691      Pg 692      Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com