Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 696
Question Number 148994 Answers: 1 Comments: 0
$$\left(\mathrm{102}\right)^{\mathrm{4}} \\ $$$${easy}\:{way}\:{to}\:{caculate} \\ $$
Question Number 148993 Answers: 2 Comments: 5
$${if}\:{M}\:{is}\:{a}\:{point}\:{on}\:{the}\:{line}\:{y}={x}\:{and} \\ $$$${points}\:{P}\left(\mathrm{0},\mathrm{1}\right),{Q}\left(\mathrm{2},\mathrm{0}\right)\:{are}\:{such}\:{that} \\ $$$${PM}+{PQ}\:{is}\:{minimum}\:{then}\:{find}\:{P} \\ $$
Question Number 148992 Answers: 2 Comments: 0
Question Number 148991 Answers: 1 Comments: 0
$${The}\:{largest}\:{value}\:{of}\:{k}\:{for}\:{which}\: \\ $$$${the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={k}^{\mathrm{2}} \:{lies}\:{completely} \\ $$$${in}\:{the}\:{interior}\:{of}\:{the}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}+\mathrm{16}\:? \\ $$
Question Number 148990 Answers: 0 Comments: 0
$${let}\:{f}:{R}\rightarrow{R}\:{be}\:{a}\:{continuius}\:{function} \\ $$$${such}\:{that}\:{for}\:{any}\:{two}\:{real}\:{numbers} \\ $$$${x}\:{and}\:{y}\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant\mathrm{10}\mid{x}−{y}\mid^{\mathrm{201}} \\ $$$${then}\:{prove}\:{that} \\ $$$${f}\left(\mathrm{2019}\right)+{f}\left(\mathrm{2022}\right)=\mathrm{2}\:{f}\left(\mathrm{2021}\right) \\ $$
Question Number 148987 Answers: 1 Comments: 0
$${if}\:\:\:{tg}\left(\mathrm{0},\mathrm{5}{x}\right)\:=\:−\mathrm{2} \\ $$$${find}\:\:\:\frac{{sin}\left({x}\right)\:+\:\mathrm{2}}{{cos}\left({x}\right)\:-\:\mathrm{3}}\:=\:? \\ $$
Question Number 148986 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{tg}^{\mathrm{2}} {x}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{6}} }{\mathrm{5}{sin}^{\mathrm{2}} {x}^{\mathrm{3}} }\:=\:? \\ $$
Question Number 148981 Answers: 0 Comments: 0
$$\int_{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{arc}\:{cosu}}{{u}^{\mathrm{2}} +\mathrm{1}}{du} \\ $$
Question Number 148975 Answers: 1 Comments: 1
Question Number 149447 Answers: 0 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{system}\: \\ $$$$\:\begin{cases}{\mathrm{sin}\:\mathrm{2x}+\mathrm{cos}\:\mathrm{3y}=−\mathrm{1}}\\{\sqrt{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{y}}\:+\sqrt{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}}\:=\mathrm{1}+\mathrm{sin}\:\left(\mathrm{x}+\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$
Question Number 149440 Answers: 1 Comments: 0
Question Number 149439 Answers: 1 Comments: 1
Question Number 149437 Answers: 1 Comments: 1
Question Number 148973 Answers: 0 Comments: 0
Question Number 148971 Answers: 0 Comments: 0
$$\:\mathrm{2}^{\mathrm{2}+{x}} −\mathrm{3}^{\mathrm{2}{x}+{y}} =−\mathrm{11} \\ $$$${and}\:\:\:\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{3}^{\mathrm{3}{y}} =\mathrm{11} \\ $$$$\:{find}\:\:{x}\:{and}\:\:{y} \\ $$
Question Number 148932 Answers: 1 Comments: 0
$$\frac{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{bc}}}\boldsymbol{{l}}_{\boldsymbol{{a}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\boldsymbol{{ab}}}\boldsymbol{{l}}_{\boldsymbol{{c}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{ac}}}\boldsymbol{{l}}_{\boldsymbol{{b}}} ^{\mathrm{2}} =\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{l}}_{\boldsymbol{{b}}} ,\boldsymbol{{l}}_{\boldsymbol{{a}}} ,\boldsymbol{{l}}_{\boldsymbol{{c}}} −\boldsymbol{{bissekterissa}} \\ $$$$\boldsymbol{{prove}} \\ $$
Question Number 148939 Answers: 0 Comments: 0
$$\:\left({B}^{\mathrm{3}} −\mathrm{2}{B}^{\mathrm{2}} −\mathrm{4}{B}+\mathrm{8}\right){y}=\mathrm{0} \\ $$$${solve}\:{the}\:{differencial}\:{equation} \\ $$
Question Number 148923 Answers: 0 Comments: 0
Question Number 148917 Answers: 1 Comments: 0
Question Number 148915 Answers: 1 Comments: 0
Question Number 148914 Answers: 0 Comments: 2
$${Solve}\:\:{the}\:\:{equation} \\ $$$$\:\:\:\mathrm{2}^{{x}} \:+\:{x}\:=\:\mathrm{11} \\ $$$${with}\:\:{Omega}\:\:{Function}\:. \\ $$
Question Number 148911 Answers: 1 Comments: 0
$${f}:\left[−\mathrm{3},\:\mathrm{0}\right]\rightarrow\left[\mathrm{7},\:\mathrm{22}\right] \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:+\:\mathrm{7} \\ $$$${find}\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)\:=\:? \\ $$
Question Number 148961 Answers: 0 Comments: 0
$$\left({L}\centerdot\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{n}_{\mathrm{0}} \right){sin}\left({atan}\left({df}\left({x}\right)/{dx}\right)\right)={c} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 148960 Answers: 1 Comments: 0
$${find}\:{the}\:{resideo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$
Question Number 148953 Answers: 0 Comments: 4
Question Number 148951 Answers: 2 Comments: 0
$${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$
Pg 691 Pg 692 Pg 693 Pg 694 Pg 695 Pg 696 Pg 697 Pg 698 Pg 699 Pg 700
Terms of Service
Privacy Policy
Contact: info@tinkutara.com