Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 696

Question Number 148994    Answers: 1   Comments: 0

(102)^4 easy way to caculate

$$\left(\mathrm{102}\right)^{\mathrm{4}} \\ $$$${easy}\:{way}\:{to}\:{caculate} \\ $$

Question Number 148993    Answers: 2   Comments: 5

if M is a point on the line y=x and points P(0,1),Q(2,0) are such that PM+PQ is minimum then find P

$${if}\:{M}\:{is}\:{a}\:{point}\:{on}\:{the}\:{line}\:{y}={x}\:{and} \\ $$$${points}\:{P}\left(\mathrm{0},\mathrm{1}\right),{Q}\left(\mathrm{2},\mathrm{0}\right)\:{are}\:{such}\:{that} \\ $$$${PM}+{PQ}\:{is}\:{minimum}\:{then}\:{find}\:{P} \\ $$

Question Number 148992    Answers: 2   Comments: 0

Question Number 148991    Answers: 1   Comments: 0

The largest value of k for which the circle x^2 +y^2 =k^2 lies completely in the interior of the parabola y^2 =4x+16 ?

$${The}\:{largest}\:{value}\:{of}\:{k}\:{for}\:{which}\: \\ $$$${the}\:{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={k}^{\mathrm{2}} \:{lies}\:{completely} \\ $$$${in}\:{the}\:{interior}\:{of}\:{the}\:{parabola} \\ $$$${y}^{\mathrm{2}} =\mathrm{4}{x}+\mathrm{16}\:? \\ $$

Question Number 148990    Answers: 0   Comments: 0

let f:R→R be a continuius function such that for any two real numbers x and y ∣f(x)−f(y)∣≤10∣x−y∣^(201) then prove that f(2019)+f(2022)=2 f(2021)

$${let}\:{f}:{R}\rightarrow{R}\:{be}\:{a}\:{continuius}\:{function} \\ $$$${such}\:{that}\:{for}\:{any}\:{two}\:{real}\:{numbers} \\ $$$${x}\:{and}\:{y}\:\mid{f}\left({x}\right)−{f}\left({y}\right)\mid\leqslant\mathrm{10}\mid{x}−{y}\mid^{\mathrm{201}} \\ $$$${then}\:{prove}\:{that} \\ $$$${f}\left(\mathrm{2019}\right)+{f}\left(\mathrm{2022}\right)=\mathrm{2}\:{f}\left(\mathrm{2021}\right) \\ $$

Question Number 148987    Answers: 1   Comments: 0

if tg(0,5x) = −2 find ((sin(x) + 2)/(cos(x) - 3)) = ?

$${if}\:\:\:{tg}\left(\mathrm{0},\mathrm{5}{x}\right)\:=\:−\mathrm{2} \\ $$$${find}\:\:\:\frac{{sin}\left({x}\right)\:+\:\mathrm{2}}{{cos}\left({x}\right)\:-\:\mathrm{3}}\:=\:? \\ $$

Question Number 148986    Answers: 1   Comments: 0

lim_(x→0) ((tg^2 x^3 + 3x^6 )/(5sin^2 x^3 )) = ?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{tg}^{\mathrm{2}} {x}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{6}} }{\mathrm{5}{sin}^{\mathrm{2}} {x}^{\mathrm{3}} }\:=\:? \\ $$

Question Number 148981    Answers: 0   Comments: 0

∫_((√2)/2) ^1 ((arc cosu)/(u^2 +1))du

$$\int_{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}} ^{\mathrm{1}} \frac{{arc}\:{cosu}}{{u}^{\mathrm{2}} +\mathrm{1}}{du} \\ $$

Question Number 148975    Answers: 1   Comments: 1

Question Number 149447    Answers: 0   Comments: 0

Solve the following system { ((sin 2x+cos 3y=−1)),(((√(sin^2 x+sin^2 y)) +(√(cos^2 x+cos^2 y)) =1+sin (x+y))) :}

$$\:\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{system}\: \\ $$$$\:\begin{cases}{\mathrm{sin}\:\mathrm{2x}+\mathrm{cos}\:\mathrm{3y}=−\mathrm{1}}\\{\sqrt{\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{y}}\:+\sqrt{\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{y}}\:=\mathrm{1}+\mathrm{sin}\:\left(\mathrm{x}+\mathrm{y}\right)}\end{cases} \\ $$$$ \\ $$

Question Number 149440    Answers: 1   Comments: 0

Question Number 149439    Answers: 1   Comments: 1

Question Number 149437    Answers: 1   Comments: 1

Question Number 148973    Answers: 0   Comments: 0

Question Number 148971    Answers: 0   Comments: 0

2^(2+x) −3^(2x+y) =−11 and 2^(x+1) +3^(3y) =11 find x and y

$$\:\mathrm{2}^{\mathrm{2}+{x}} −\mathrm{3}^{\mathrm{2}{x}+{y}} =−\mathrm{11} \\ $$$${and}\:\:\:\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{3}^{\mathrm{3}{y}} =\mathrm{11} \\ $$$$\:{find}\:\:{x}\:{and}\:\:{y} \\ $$

Question Number 148932    Answers: 1   Comments: 0

(((b+c)^2 )/(bc))l_a ^2 +(((a+b)^2 )/(ab))l_c ^2 +(((a+c)^2 )/(ac))l_b ^2 =(a+b+c)^2 l_b ,l_a ,l_c −bissekterissa prove

$$\frac{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{bc}}}\boldsymbol{{l}}_{\boldsymbol{{a}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\boldsymbol{{ab}}}\boldsymbol{{l}}_{\boldsymbol{{c}}} ^{\mathrm{2}} +\frac{\left(\boldsymbol{{a}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }{\boldsymbol{{ac}}}\boldsymbol{{l}}_{\boldsymbol{{b}}} ^{\mathrm{2}} =\left(\boldsymbol{{a}}+\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{l}}_{\boldsymbol{{b}}} ,\boldsymbol{{l}}_{\boldsymbol{{a}}} ,\boldsymbol{{l}}_{\boldsymbol{{c}}} −\boldsymbol{{bissekterissa}} \\ $$$$\boldsymbol{{prove}} \\ $$

Question Number 148939    Answers: 0   Comments: 0

(B^3 −2B^2 −4B+8)y=0 solve the differencial equation

$$\:\left({B}^{\mathrm{3}} −\mathrm{2}{B}^{\mathrm{2}} −\mathrm{4}{B}+\mathrm{8}\right){y}=\mathrm{0} \\ $$$${solve}\:{the}\:{differencial}\:{equation} \\ $$

Question Number 148923    Answers: 0   Comments: 0

Question Number 148917    Answers: 1   Comments: 0

Question Number 148915    Answers: 1   Comments: 0

Question Number 148914    Answers: 0   Comments: 2

Solve the equation 2^x + x = 11 with Omega Function .

$${Solve}\:\:{the}\:\:{equation} \\ $$$$\:\:\:\mathrm{2}^{{x}} \:+\:{x}\:=\:\mathrm{11} \\ $$$${with}\:\:{Omega}\:\:{Function}\:. \\ $$

Question Number 148911    Answers: 1   Comments: 0

f:[−3, 0]→[7, 22] f(x) = x^2 - 2x + 7 find f^( −1) (x) = ?

$${f}:\left[−\mathrm{3},\:\mathrm{0}\right]\rightarrow\left[\mathrm{7},\:\mathrm{22}\right] \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:+\:\mathrm{7} \\ $$$${find}\:\:\:{f}^{\:−\mathrm{1}} \left({x}\right)\:=\:? \\ $$

Question Number 148961    Answers: 0   Comments: 0

(L∙(√(x^2 +y^2 ))+n_0 )sin(atan(df(x)/dx))=c f(x)=?

$$\left({L}\centerdot\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }+{n}_{\mathrm{0}} \right){sin}\left({atan}\left({df}\left({x}\right)/{dx}\right)\right)={c} \\ $$$${f}\left({x}\right)=? \\ $$

Question Number 148960    Answers: 1   Comments: 0

find the resideo f(z)=(z/(z^n −1))

$${find}\:{the}\:{resideo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$

Question Number 148953    Answers: 0   Comments: 4

Question Number 148951    Answers: 2   Comments: 0

Let complex number z=(a+cos θ)+(2a−sin θ)i . If ∣z∣ ≤2 for any θ∈R then the range of real number a is ___

$${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$

  Pg 691      Pg 692      Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com