Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 696

Question Number 149914    Answers: 0   Comments: 0

show that∫_1 ^2 (((2+6ΞΈ^2 βˆ’2𝛉^3 )/(𝛉^2 (𝛉^2 +1))))d𝛉=1.606

$$\boldsymbol{{show}}\:\boldsymbol{{that}}\int_{\mathrm{1}} ^{\mathrm{2}} \left(\frac{\mathrm{2}+\mathrm{6}\theta^{\mathrm{2}} βˆ’\mathrm{2}\boldsymbol{\theta}^{\mathrm{3}} }{\boldsymbol{\theta}^{\mathrm{2}} \left(\boldsymbol{\theta}^{\mathrm{2}} +\mathrm{1}\right)}\right)\boldsymbol{{d}\theta}=\mathrm{1}.\mathrm{606} \\ $$

Question Number 149903    Answers: 1   Comments: 0

Ξ© = ∫_0 ^(Ο€/2) ((cos^3 x)/( (√(1βˆ’cos^2 x)))) dx

$$\:\Omega\:=\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\frac{\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}{\:\sqrt{\mathrm{1}βˆ’\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}}\:\mathrm{dx}\: \\ $$

Question Number 149894    Answers: 1   Comments: 1

Question Number 149891    Answers: 1   Comments: 0

if x;y;z;m;n;p∈R^+ then prove that: Ξ£_(cyc) ((m(x+y))/( (√((n+2p)x^2 +2nxy+(n+2p)y^2 )))) ≀ ((3m)/( (√(n+p))))

$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{m};\mathrm{n};\mathrm{p}\in\mathbb{R}^{+} \:\mathrm{then}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{m}\left(\mathrm{x}+\mathrm{y}\right)}{\:\sqrt{\left(\mathrm{n}+\mathrm{2p}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{2nxy}+\left(\mathrm{n}+\mathrm{2p}\right)\mathrm{y}^{\mathrm{2}} }}\:\leqslant\:\frac{\mathrm{3m}}{\:\sqrt{\mathrm{n}+\mathrm{p}}} \\ $$

Question Number 149889    Answers: 0   Comments: 3

Question Number 149886    Answers: 0   Comments: 0

lim_(x→0^+ ) ((ln^2 (x))/x^2 )(((ln (sin ((x/2))))/(ln (sin (x)))) +((ln 2)/(ln (x)))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{ln}\:^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\left(\frac{\mathrm{ln}\:\left(\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{ln}\:\left(\mathrm{sin}\:\left(\mathrm{x}\right)\right)}\:+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\left(\mathrm{x}\right)}\right)\:=? \\ $$

Question Number 149885    Answers: 1   Comments: 0

I_n =∫_0 ^(Ο€/4) (dx/(cos^(2n+1) x)) to show that : βˆ€ n∈N^βˆ— , 2nI_n =(2nβˆ’1)I_(nβˆ’1) +(2^n /( (√2))) (I_n =∫_0 ^(Ο€/4) ((1/(cos^(2nβˆ’1) x))Γ—(1/(cos^2 x)))dx)...

$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}} \\ $$$${to}\:{show}\:{that}\:: \\ $$$$\forall\:{n}\in\mathbb{N}^{\ast} ,\:\mathrm{2}{nI}_{{n}} =\left(\mathrm{2}{n}βˆ’\mathrm{1}\right){I}_{{n}βˆ’\mathrm{1}} +\frac{\mathrm{2}^{{n}} }{\:\sqrt{\mathrm{2}}} \\ $$$$\left({I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}{n}βˆ’\mathrm{1}} {x}}Γ—\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\right){dx}\right)... \\ $$

Question Number 149883    Answers: 1   Comments: 0

Prove that ((2+(√5)))^(1/3) +((2βˆ’(√5)))^(1/3) is a rational number

$$\mathrm{Prove}\:\mathrm{that}\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}+\sqrt[{\mathrm{3}}]{\mathrm{2}βˆ’\sqrt{\mathrm{5}}}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rational}\:\mathrm{number} \\ $$

Question Number 149876    Answers: 2   Comments: 0

Question Number 149871    Answers: 1   Comments: 0

lim_(xβ†’2) ((3^(x!) βˆ’9)/(xβˆ’2))

$${lim}_{{x}\rightarrow\mathrm{2}} \frac{\mathrm{3}^{{x}!} βˆ’\mathrm{9}}{{x}βˆ’\mathrm{2}} \\ $$

Question Number 149870    Answers: 0   Comments: 3

if x;y;z;m;n∈R^+ then: Ξ£_(cyc) (b^(βˆ’1) /((m(√x) + n(√y))^2 )) β‰₯ (3/((m + n)^2 ))

$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{m};\mathrm{n}\in\mathbb{R}^{+} \:\:\mathrm{then}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{b}^{βˆ’\mathrm{1}} }{\left(\mathrm{m}\sqrt{\mathrm{x}}\:+\:\mathrm{n}\sqrt{\mathrm{y}}\right)^{\mathrm{2}} }\:\geqslant\:\frac{\mathrm{3}}{\left(\mathrm{m}\:+\:\mathrm{n}\right)^{\mathrm{2}} } \\ $$

Question Number 149852    Answers: 0   Comments: 0

What angle is subtended at the centre of the Earth by an arc of the equator of length 1) 2002km 2) 30030km

What angle is subtended at the centre of the Earth by an arc of the equator of length 1) 2002km 2) 30030km

Question Number 149868    Answers: 1   Comments: 0

if a;b and c are the dimensions of a cuboid with the diagonal d then prove d ≀ (√((a^3 /b) + (b^3 /c) + (c^3 /a)))

$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\:\:\mathrm{and}\:\:\mathrm{c}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\:\mathrm{a} \\ $$$$\mathrm{cuboid}\:\mathrm{with}\:\mathrm{the}\:\mathrm{diagonal}\:\boldsymbol{\mathrm{d}}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{d}\:\leqslant\:\sqrt{\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{b}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{c}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{a}}} \\ $$

Question Number 150356    Answers: 3   Comments: 0

solve... I:= ∫_0 ^( 1) (( Arcsin ((√x) ))/(1βˆ’x + x^( 2) )) dx=?

$$\:{solve}... \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Arcsin}\:\left(\sqrt{{x}}\:\right)}{\mathrm{1}βˆ’{x}\:+\:{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$

Question Number 149865    Answers: 1   Comments: 0

Question Number 149830    Answers: 1   Comments: 0

lim_(xβ†’0) ((√(xβˆ’(√(xβˆ’(√(xβˆ’...))))))/(sin (sin (sin (....x)))=?

$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\sqrt{{x}βˆ’\sqrt{{x}βˆ’\sqrt{{x}βˆ’...}}}}{{sin}\:\left({sin}\:\left({sin}\:\left(....{x}\right)\right.\right.}=? \\ $$

Question Number 149955    Answers: 1   Comments: 0

If a group consist of 8 men and 6 women, in how many ways can a committee of 5 be selected if: i) the committee is to consist of 3 men and 3 women. ii) there are no restrictions on the number of men and women on the committee. iii) at least one man

$$\mathrm{If}\:\mathrm{a}\:\mathrm{group}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{8}\:\mathrm{men}\:\mathrm{and}\:\mathrm{6}\:\mathrm{women}, \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{committee}\:\mathrm{of} \\ $$$$\mathrm{5}\:\mathrm{be}\:\mathrm{selected}\:\mathrm{if}: \\ $$$$\left.\:\:\:\:\:\:\mathrm{i}\right)\:\mathrm{the}\:\mathrm{committee}\:\mathrm{is}\:\mathrm{to}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{3}\:\mathrm{men} \\ $$$$\mathrm{and}\:\mathrm{3}\:\mathrm{women}. \\ $$$$\left.\:\:\:\:\:\:\mathrm{ii}\right)\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{restrictions}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{and}\:\mathrm{women}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{committee}. \\ $$$$\left.\:\:\:\:\:\:\:\mathrm{iii}\right)\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{man} \\ $$

Question Number 149817    Answers: 0   Comments: 0

x^3 βˆ’x=c let x=t+h t^3 +3ht^2 +(3h^2 βˆ’1)t+h^3 βˆ’hβˆ’c=0 let t(t^2 +3h^2 βˆ’1)=p 3ht^2 +h^3 βˆ’hβˆ’c=q β‡’ t^2 =((q+c+hβˆ’h^3 )/(3h)) p+q=0 (((q+c+hβˆ’h^3 )/(3h)))(((q+c+hβˆ’h^3 )/(3h))+3h^2 βˆ’1)^2 =q^2 β‡’ (q+c+hβˆ’h^3 )(q+cβˆ’2h+8h^3 )^2 = 27h^3 q^2 let q+cβˆ’2h=0 β‡’ 64h^4 (3βˆ’h^2 )=27(2hβˆ’c)^2 β‡’ 8h^2 (√(3βˆ’h^2 ))=3(√3)(2hβˆ’c) let h=(√3)sin ΞΈ β‡’ 8sin^2 ΞΈcos ΞΈ=2(√3)sin ΞΈβˆ’c 4sin ΞΈsin 2ΞΈ=2(√3)sin ΞΈβˆ’c 2sin ΞΈ((√3)βˆ’2sin 2ΞΈ)=c ......

$$\:\:\:{x}^{\mathrm{3}} βˆ’{x}={c} \\ $$$$\:\:{let}\:\:{x}={t}+{h} \\ $$$${t}^{\mathrm{3}} +\mathrm{3}{ht}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} βˆ’\mathrm{1}\right){t}+{h}^{\mathrm{3}} βˆ’{h}βˆ’{c}=\mathrm{0} \\ $$$${let}\:\:{t}\left({t}^{\mathrm{2}} +\mathrm{3}{h}^{\mathrm{2}} βˆ’\mathrm{1}\right)={p} \\ $$$$\mathrm{3}{ht}^{\mathrm{2}} +{h}^{\mathrm{3}} βˆ’{h}βˆ’{c}={q} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} =\frac{{q}+{c}+{h}βˆ’{h}^{\mathrm{3}} }{\mathrm{3}{h}} \\ $$$${p}+{q}=\mathrm{0} \\ $$$$\left(\frac{{q}+{c}+{h}βˆ’{h}^{\mathrm{3}} }{\mathrm{3}{h}}\right)\left(\frac{{q}+{c}+{h}βˆ’{h}^{\mathrm{3}} }{\mathrm{3}{h}}+\mathrm{3}{h}^{\mathrm{2}} βˆ’\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:={q}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left({q}+{c}+{h}βˆ’{h}^{\mathrm{3}} \right)\left({q}+{c}βˆ’\mathrm{2}{h}+\mathrm{8}{h}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{27}{h}^{\mathrm{3}} {q}^{\mathrm{2}} \\ $$$${let}\:\:{q}+{c}βˆ’\mathrm{2}{h}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\mathrm{64}{h}^{\mathrm{4}} \left(\mathrm{3}βˆ’{h}^{\mathrm{2}} \right)=\mathrm{27}\left(\mathrm{2}{h}βˆ’{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{8}{h}^{\mathrm{2}} \sqrt{\mathrm{3}βˆ’{h}^{\mathrm{2}} }=\mathrm{3}\sqrt{\mathrm{3}}\left(\mathrm{2}{h}βˆ’{c}\right) \\ $$$${let}\:\:{h}=\sqrt{\mathrm{3}}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:\mathrm{8sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:\theta=\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\thetaβˆ’{c} \\ $$$$\mathrm{4sin}\:\theta\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\thetaβˆ’{c} \\ $$$$\mathrm{2sin}\:\theta\left(\sqrt{\mathrm{3}}βˆ’\mathrm{2sin}\:\mathrm{2}\theta\right)={c} \\ $$$$...... \\ $$

Question Number 149813    Answers: 1   Comments: 1

∫(βˆ’1)^([x]) dx = ?

$$\int\left(βˆ’\mathrm{1}\right)^{\left[\boldsymbol{\mathrm{x}}\right]} \:\mathrm{dx}\:=\:? \\ $$

Question Number 149809    Answers: 2   Comments: 0

Question Number 149854    Answers: 0   Comments: 11

Question Number 149853    Answers: 1   Comments: 0

Question Number 149805    Answers: 1   Comments: 0

Question Number 149795    Answers: 1   Comments: 0

lim_(nβ†’βˆž) ((1βˆ™3βˆ™5βˆ™7βˆ™ ... βˆ™(2n-1))/(2βˆ™4βˆ™6βˆ™ ... βˆ™2n)) = ?

$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}\centerdot\mathrm{3}\centerdot\mathrm{5}\centerdot\mathrm{7}\centerdot\:...\:\centerdot\left(\mathrm{2n}-\mathrm{1}\right)}{\mathrm{2}\centerdot\mathrm{4}\centerdot\mathrm{6}\centerdot\:...\:\centerdot\mathrm{2n}}\:=\:? \\ $$

Question Number 149793    Answers: 0   Comments: 1

Compare: tan(11Β°) and (1/5)

$$\mathrm{Compare}: \\ $$$$\mathrm{tan}\left(\mathrm{11}Β°\right)\:\:\:\mathrm{and}\:\:\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Question Number 149789    Answers: 0   Comments: 0

form

$${form} \\ $$

  Pg 691      Pg 692      Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700   

Terms of Service

Privacy Policy

Contact: [email protected]