Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 696

Question Number 149120    Answers: 0   Comments: 0

Question Number 149113    Answers: 1   Comments: 0

∫_0 ^( π) ((cos^3 x)/(7−sin^2 x)) dx =?

$$\:\int_{\mathrm{0}} ^{\:\pi} \:\frac{\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}}{\mathrm{7}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:\mathrm{dx}\:=? \\ $$

Question Number 149112    Answers: 0   Comments: 2

ϕ = ∫ tan (x+(π/3))tan 3x tan (2x−(π/3)) dx =?

$$\:\varphi\:=\:\int\:\mathrm{tan}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)\mathrm{tan}\:\mathrm{3x}\:\mathrm{tan}\:\left(\mathrm{2x}−\frac{\pi}{\mathrm{3}}\right)\:\mathrm{dx}\:=? \\ $$

Question Number 149107    Answers: 1   Comments: 0

Question Number 149106    Answers: 0   Comments: 0

Question Number 149116    Answers: 1   Comments: 0

If A is a 3×3 matrix where det(A)=−2 then what will be det(3A^2 A^(−1) )? knowing that A^(−1) is the inverse of A

$$\:\mathrm{If}\:\mathrm{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{3}×\mathrm{3}\:\mathrm{matrix}\:\mathrm{where}\:\mathrm{det}\left(\mathrm{A}\right)=−\mathrm{2} \\ $$$$\mathrm{then}\:\mathrm{what}\:\mathrm{will}\:\mathrm{be}\:\mathrm{det}\left(\mathrm{3A}^{\mathrm{2}} \mathrm{A}^{−\mathrm{1}} \right)? \\ $$$$\mathrm{knowing}\:\mathrm{that}\:\mathrm{A}^{−\mathrm{1}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse} \\ $$$$\mathrm{of}\:\mathrm{A}\: \\ $$

Question Number 149100    Answers: 1   Comments: 0

Question Number 149092    Answers: 0   Comments: 0

Question Number 149085    Answers: 0   Comments: 0

Question Number 149081    Answers: 1   Comments: 0

Question Number 149080    Answers: 0   Comments: 0

Question Number 149068    Answers: 1   Comments: 0

Question Number 149060    Answers: 1   Comments: 0

if 4z(√z) − 11(√z) = 5 find 2z − (√z) = ?

$${if}\:\:\:\mathrm{4}{z}\sqrt{{z}}\:−\:\mathrm{11}\sqrt{{z}}\:=\:\mathrm{5} \\ $$$${find}\:\:\:\mathrm{2}{z}\:−\:\sqrt{{z}}\:=\:? \\ $$

Question Number 149045    Answers: 1   Comments: 0

∣a^(→) ∣ = ∣b^(→) ∣ = 4 and cos𝛂 = 60° find a^(→) ∙ b^(→) = ?

$$\mid\overset{\rightarrow} {\boldsymbol{{a}}}\mid\:=\:\mid\overset{\rightarrow} {\boldsymbol{{b}}}\mid\:=\:\mathrm{4}\:\:\:{and}\:\:\:{cos}\boldsymbol{\alpha}\:=\:\mathrm{60}° \\ $$$${find}\:\:\:\overset{\rightarrow} {\boldsymbol{{a}}}\:\centerdot\:\overset{\rightarrow} {\boldsymbol{{b}}}\:=\:? \\ $$

Question Number 149043    Answers: 1   Comments: 3

Question Number 149042    Answers: 1   Comments: 0

100x^(lg(x)) = x^3 ⇒ x = ?

$$\mathrm{100}\boldsymbol{{x}}^{\boldsymbol{{lg}}\left(\boldsymbol{{x}}\right)} \:=\:\boldsymbol{{x}}^{\mathrm{3}} \:\:\:\Rightarrow\:\:\:\boldsymbol{{x}}\:=\:? \\ $$

Question Number 149041    Answers: 1   Comments: 3

(√(x - 3 + 2(√(x - 4)))) − (√(x + 5 - 6(√(x - 2)))) =2 ⇒ x = ?

$$\sqrt{{x}\:-\:\mathrm{3}\:+\:\mathrm{2}\sqrt{{x}\:-\:\mathrm{4}}}\:−\:\sqrt{{x}\:+\:\mathrm{5}\:-\:\mathrm{6}\sqrt{{x}\:-\:\mathrm{2}}}\:=\mathrm{2} \\ $$$$\Rightarrow\:\boldsymbol{{x}}\:=\:? \\ $$

Question Number 149040    Answers: 1   Comments: 0

{ ((x^2 +xy=4x)),((y^2 +xy=4y)) :} ⇒ log_(16) ^((x_1 +y_1 +x_2 +y_2 )) = ?

$$\begin{cases}{{x}^{\mathrm{2}} +{xy}=\mathrm{4}{x}}\\{{y}^{\mathrm{2}} +{xy}=\mathrm{4}{y}}\end{cases}\:\:\:\Rightarrow\:\:{log}_{\mathrm{16}} ^{\left(\boldsymbol{{x}}_{\mathrm{1}} +\boldsymbol{{y}}_{\mathrm{1}} +\boldsymbol{{x}}_{\mathrm{2}} +\boldsymbol{{y}}_{\mathrm{2}} \right)} \:=\:? \\ $$

Question Number 149061    Answers: 0   Comments: 0

factorise 4/5^x +1

$$\mathrm{factorise}\:\:\:\:\mathrm{4}/\mathrm{5}^{\mathrm{x}} +\mathrm{1} \\ $$

Question Number 149036    Answers: 1   Comments: 0

if x;y;z>0 and xyz=8 prove that: (1/(x^2 + 8)) + (1/(y^2 + 8)) + (1/(z^2 + 8)) ≤ (1/4)

$${if}\:\:\:{x};{y};{z}>\mathrm{0}\:\:\:{and}\:\:\:{xyz}=\mathrm{8}\:\:\:{prove}\:{that}: \\ $$$$\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+\:\mathrm{8}}\:+\:\frac{\mathrm{1}}{{y}^{\mathrm{2}} \:+\:\mathrm{8}}\:+\:\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{8}}\:\leqslant\:\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 149031    Answers: 2   Comments: 0

Question Number 149030    Answers: 0   Comments: 0

f(x)=4_−_(5^x +1) x=0,1,2..... find the moment generating function

$$\mathrm{f}\left(\mathrm{x}\right)=\underset{\underset{\mathrm{5}^{\mathrm{x}} +\mathrm{1}} {−}} {\mathrm{4}}\:\:\:\:\mathrm{x}=\mathrm{0},\mathrm{1},\mathrm{2}.....\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{moment}\: \\ $$$$\mathrm{generating}\:\mathrm{function} \\ $$

Question Number 149077    Answers: 1   Comments: 0

Ω := ∫_0 ^( 1) ((ln ( 1+ (√x) ))/(1+x)) dx =? .....m.n.....

$$ \\ $$$$\:\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{ln}\:\left(\:\mathrm{1}+\:\sqrt{{x}}\:\right)}{\mathrm{1}+{x}}\:{dx}\:=? \\ $$$$\:.....{m}.{n}..... \\ $$

Question Number 149025    Answers: 1   Comments: 3

Solve for equation: cos^3 (x) - sin^3 (x) + 1

$${Solve}\:{for}\:{equation}: \\ $$$${cos}^{\mathrm{3}} \left({x}\right)\:-\:{sin}^{\mathrm{3}} \left({x}\right)\:+\:\mathrm{1} \\ $$

Question Number 149024    Answers: 2   Comments: 0

Question Number 149023    Answers: 1   Comments: 0

∫_0 ^(π/4) ((tsint)/(1+cos^2 t))dt=∫_0 ^(π/4) ((tcost)/(1+sin^2 t))dt true or false ??

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{tsint}}{\mathrm{1}+{cos}^{\mathrm{2}} {t}}{dt}=\overset{\frac{\pi}{\mathrm{4}}} {\int}_{\mathrm{0}} \frac{{tcost}}{\mathrm{1}+{sin}^{\mathrm{2}} {t}}{dt} \\ $$$${true}\:{or}\:{false}\:?? \\ $$

  Pg 691      Pg 692      Pg 693      Pg 694      Pg 695      Pg 696      Pg 697      Pg 698      Pg 699      Pg 700   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com