Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 69
Question Number 214495 Answers: 0 Comments: 1
Question Number 214485 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{2}\centerdot\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{7}}+...+\frac{\mathrm{1}}{\left(\mathrm{3}{n}−\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{1}\right)}\right) \\ $$
Question Number 214569 Answers: 2 Comments: 0
Question Number 214568 Answers: 1 Comments: 0
$$\int\frac{{b}+{ax}}{\mathrm{1}+\mathrm{sin}\:{x}}\:{dx} \\ $$
Question Number 214566 Answers: 2 Comments: 0
$${somebody}\:{has}\:{posted}\:{following} \\ $$$${question}\:{and}\:{then}\:{deleted}\:{it}\:{again}. \\ $$$$\begin{cases}{{u}_{{n}+\mathrm{1}} =\frac{\mathrm{4}{u}_{{n}} −\mathrm{9}}{{u}_{{n}} −\mathrm{2}}}\\{{u}_{\mathrm{0}} =\mathrm{5}}\end{cases} \\ $$$${find}\:{u}_{{n}} =?\:\left({or}\:{something}\:{like}\:{this}\right) \\ $$
Question Number 214483 Answers: 1 Comments: 0
Question Number 214479 Answers: 2 Comments: 0
Question Number 214471 Answers: 1 Comments: 0
$${d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0} \\ $$$$\underset{{k};\:{d}^{\mathrm{2}} −{d}+\mathrm{2}=\mathrm{0}} {\sum}\:\frac{\mathrm{1}}{{k}}=?? \\ $$
Question Number 214491 Answers: 0 Comments: 0
Question Number 214457 Answers: 2 Comments: 2
$$\mathrm{If}\:\:\:\frac{\left(\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{3z}\right)^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{z}^{\mathrm{2}} }\:=\:\mathrm{14}\:\:\:\:\:\mathrm{find}:\:\:\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{z}}\:=\:? \\ $$
Question Number 214456 Answers: 2 Comments: 1
$$\mathrm{If}\:\:\:\frac{\mathrm{x}}{\mathrm{a}^{\mathrm{2}} −\:\mathrm{bc}}\:=\:\frac{\mathrm{y}}{\mathrm{b}^{\mathrm{2}} −\:\mathrm{ac}}\:=\:\frac{\mathrm{z}}{\mathrm{c}^{\mathrm{2}} −\:\mathrm{ab}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{ax}\:+\:\mathrm{by}\:+\:\mathrm{cz}}{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}\:=\:? \\ $$
Question Number 214455 Answers: 0 Comments: 4
$$\mathrm{If}\:\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{xyz} \\ $$$$\mathrm{Find}: \\ $$$$\frac{\mathrm{x}\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)+\mathrm{z}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{2xyz}} \\ $$
Question Number 214454 Answers: 0 Comments: 1
$$\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\mathbb{R}^{+} \\ $$$$\mathrm{S}\:\:=\:\:\frac{\mathrm{9a}}{\mathrm{b}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{16b}}{\mathrm{a}\:+\:\mathrm{c}}\:\:+\:\:\frac{\mathrm{49c}}{\mathrm{a}\:+\:\mathrm{b}} \\ $$$$\boldsymbol{\mathrm{min}}\left(\mathrm{S}\right)\:=\:? \\ $$
Question Number 214443 Answers: 1 Comments: 0
$$\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:\in\:\mathrm{Q} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}\:=\:\mathrm{2}^{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{c}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{d}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{e}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{f}}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d},\mathrm{e},\mathrm{f}\:=\:? \\ $$
Question Number 214449 Answers: 2 Comments: 1
Question Number 214448 Answers: 0 Comments: 0
$$ \\ $$$$\overset{−} {{x}}\:=\:\frac{\Sigma{f}_{{i}} {x}_{{i}} }{\Sigma{f}_{{i}} \:}\:,\:\:\:\overset{−} {{u}}\:=\:\frac{\Sigma{f}_{{i}} {u}_{{i}} }{\Sigma{f}_{{i}} }\:,\:{u}\:=\:\frac{{x}−{a}}{{h}}\:, \\ $$$${proved}\:{that}\:\overset{−} {{x}}\:=\:{a}\:+\:{h}\overset{−} {{u}} \\ $$
Question Number 214447 Answers: 1 Comments: 1
Question Number 214427 Answers: 3 Comments: 1
Question Number 214421 Answers: 1 Comments: 0
Question Number 214419 Answers: 1 Comments: 0
Question Number 214414 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\:\beta, \\ $$$$\:\mathrm{show}\:\mathrm{that}; \\ $$$$\lambda\mu\mathrm{b}^{\mathrm{2}} =\mathrm{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \:\mathrm{where}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Mr}\:{Hans} \\ $$
Question Number 214408 Answers: 2 Comments: 0
Question Number 214409 Answers: 3 Comments: 0
Question Number 214402 Answers: 3 Comments: 0
$$\:\:\:\mathrm{If}\:\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}\:=\:\frac{\mathrm{b}+\mathrm{c}}{\mathrm{a}}\:=\:\frac{\mathrm{a}+\mathrm{c}}{\mathrm{b}}\:\mathrm{then}\:\mathrm{find}\: \\ $$$$\:\:\:\:\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}\:. \\ $$
Question Number 214398 Answers: 1 Comments: 1
Question Number 214395 Answers: 1 Comments: 1
Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73
Terms of Service
Privacy Policy
Contact: info@tinkutara.com