Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 686
Question Number 147609 Answers: 0 Comments: 0
Question Number 147606 Answers: 0 Comments: 0
$$\frac{\boldsymbol{\mathrm{R}}}{\boldsymbol{{r}}}=\frac{\mathrm{5}}{\mathrm{2}}\:\:\Rightarrow\:\boldsymbol{{a}}:\boldsymbol{{b}}:\boldsymbol{{c}}=\mathrm{3}:\mathrm{4}:\mathrm{5} \\ $$$$\boldsymbol{\mathrm{prove}}\:\: \\ $$$$\boldsymbol{\mathrm{R}},\boldsymbol{{r}}−\:\boldsymbol{\mathrm{radius}} \\ $$$$\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} =\frac{\mathrm{1}}{\boldsymbol{{a}}}:\frac{\mathrm{1}}{\boldsymbol{{b}}}:\frac{\mathrm{1}}{\boldsymbol{{c}}}=\boldsymbol{{bc}}:\boldsymbol{{ac}}:\boldsymbol{{ab}} \\ $$$$\boldsymbol{{prove}} \\ $$
Question Number 147603 Answers: 1 Comments: 0
Question Number 147602 Answers: 1 Comments: 0
Question Number 147593 Answers: 2 Comments: 0
Question Number 147587 Answers: 1 Comments: 1
Question Number 147585 Answers: 1 Comments: 0
Question Number 147582 Answers: 1 Comments: 0
$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that} \\ $$$$\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} }{{xyz}}\:\geqslant\:\mathrm{2}\left(\frac{{x}}{{y}+{z}}\:+\:\frac{{y}}{{z}+{x}}\:+\:\frac{{z}}{{x}+{y}}\right) \\ $$
Question Number 147581 Answers: 1 Comments: 0
$$\:\:\mathrm{2sin}\:\mathrm{2x}\:−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{7cos}\:\mathrm{2x}\: \\ $$$$\:\frac{\pi}{\mathrm{2}}<\mathrm{x}<\pi\:\Rightarrow\:\mathrm{sin}\:\mathrm{2x}\:=? \\ $$
Question Number 147576 Answers: 1 Comments: 0
$$\left(\mathrm{1}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{i}−\mathrm{j}\mid=? \\ $$$$\left(\mathrm{2}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{i}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{j}}=? \\ $$$$\left(\mathrm{3}\right)::\:\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}^{\mathrm{2}} } {\sum}}\left[\sqrt{\mathrm{i}}\right]=? \\ $$
Question Number 147573 Answers: 0 Comments: 1
Question Number 147572 Answers: 2 Comments: 0
$$\:\:\:\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{4}{n}−\mathrm{3}}{\left({n}^{\mathrm{2}} +\mathrm{2}{n}\right)\left({n}+\mathrm{3}\right)}\:=? \\ $$
Question Number 147569 Answers: 1 Comments: 0
$${find}\:{the}\:{taylor}\:{series}\:{of}\:{f}\left({z}\right)={sinz}\:,{z}=\frac{\pi}{\mathrm{4}}\:{in}\:{complex}\:{number} \\ $$
Question Number 147566 Answers: 1 Comments: 0
$${x}^{\mathrm{3}} \:+\:\mathrm{3367}\:=\:\mathrm{2}^{\boldsymbol{{n}}} \:\:\Rightarrow\:{x}\:;\:{n}\:=\:? \\ $$
Question Number 147561 Answers: 1 Comments: 1
Question Number 147557 Answers: 2 Comments: 0
$${Simlify} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \\ $$
Question Number 147554 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{toroid}\:\mathrm{core}\:\mathrm{has}\:\mathrm{N}=\mathrm{1200}\:\mathrm{turns}, \\ $$$$\mathrm{length}\:\mathrm{L}=\mathrm{80cm},\mathrm{cross}-\mathrm{section}\:\mathrm{area} \\ $$$$\mathrm{A}=\mathrm{60cm}^{\mathrm{2}} ,\mathrm{current}\:\mathrm{I}=\mathrm{1}.\mathrm{5A}. \\ $$$$\:\:\mathrm{Compute}\:\mathrm{B}\:\mathrm{and}\:\mathrm{H}.\mathrm{Assume}\:\mathrm{an} \\ $$$$\:\mathrm{empty}\:\mathrm{core} \\ $$
Question Number 147553 Answers: 1 Comments: 0
Question Number 147543 Answers: 2 Comments: 0
$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{m}} \\ $$
Question Number 147539 Answers: 2 Comments: 0
$${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{5}} }{dx}\:\leqslant\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\leqslant\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$
Question Number 147535 Answers: 1 Comments: 1
Question Number 147529 Answers: 3 Comments: 1
$${if}\:\:\:{a}_{\boldsymbol{{n}}+\mathrm{1}} \:=\:\sqrt{{a}_{\mathrm{1}} \:+\:{a}_{\boldsymbol{{n}}} } \\ $$$${find}\:\:\underset{\boldsymbol{{x}}\rightarrow\infty} {{lim}a}_{\boldsymbol{{n}}} \:=\:? \\ $$
Question Number 147528 Answers: 0 Comments: 3
$${q}_{{n}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\prod}}{cos}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right) \\ $$$$\left.{i}\right)\:{study}\:{the}\:{variation}\:{of}\:{q}_{{n}} \\ $$$$\left.{ii}\right) \\ $$$$\:{show}\:{that}\:{cosx}=\frac{{sin}\mathrm{2}{x}}{\mathrm{2}{sinx}}\:,\:\forall{x}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\left.{iii}\right) \\ $$$${deduce}\:{that}\:{q}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} }×\frac{{sin}\mathrm{2}{x}}{{sin}\left(\frac{{x}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\left.{iv}\right)\underset{{n}\rightarrow\infty} {\mathrm{lim}}{q}_{{n}} =? \\ $$$$\left.{v}\right)\: \\ $$$${solve}\:{cos}\left(\frac{{x}}{\mathrm{2}}\right)\geqslant−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 147524 Answers: 0 Comments: 5
Question Number 147513 Answers: 1 Comments: 1
Question Number 147661 Answers: 1 Comments: 0
$$\mathrm{41}^{\mathrm{3}} \:+\:\mathrm{42}^{\mathrm{3}} \:+\:\mathrm{43}^{\mathrm{3}} \:+\:...\:+\:\mathrm{59}^{\mathrm{3}} \\ $$$${Find}\:{the}\:{last}\:{three}\:{digits}\:{of}\:{the} \\ $$$${number} \\ $$
Pg 681 Pg 682 Pg 683 Pg 684 Pg 685 Pg 686 Pg 687 Pg 688 Pg 689 Pg 690
Terms of Service
Privacy Policy
Contact: info@tinkutara.com