Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 686

Question Number 149718    Answers: 1   Comments: 0

Question Number 149686    Answers: 2   Comments: 2

Question Number 149675    Answers: 0   Comments: 0

lim_(nβ†’βˆž) ((∫_( 0) ^( ∞) (dx/((x^2 + (1/4))^(n+1) ))))^(1/n) = ?

$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\boldsymbol{\mathrm{n}}}]{\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{4}}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }}\:=\:? \\ $$

Question Number 149673    Answers: 3   Comments: 0

solve :: [ 1] 𝛗 := ∫_0 ^( ∞ ) ((ln^( 2) (e x ))/(e^( 4) +x^( 2) )) dx =((Ο€ k)/e^( 2) ) k:= ? [ 2 ] Ξ© := ∫_(0 ) ^( ∞) (( ln^( 3) (x ))/( e^( 2) + x^( 2) )) dx = ?

$$\:\:\:\mathrm{solve}\::: \\ $$$$\left[\:\mathrm{1}\right]\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\:\infty\:} \frac{{ln}^{\:\mathrm{2}} \:\left({e}\:{x}\:\right)}{{e}^{\:\mathrm{4}} \:+{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi\:{k}}{{e}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\left[\:\mathrm{2}\:\right]\:\:\:\Omega\::=\:\int_{\mathrm{0}\:} ^{\:\infty} \:\frac{\:{ln}^{\:\mathrm{3}} \:\left({x}\:\right)}{\:{e}^{\:\mathrm{2}} +\:{x}^{\:\mathrm{2}} }\:{dx}\:=\:? \\ $$

Question Number 149670    Answers: 1   Comments: 0

Solve the equation x=(√(aβˆ’(√(a+x)) )) where a>0 is a parameter.

$$\:\:\:{Solve}\:{the}\:{equation}\: \\ $$$$\:\:{x}=\sqrt{{a}βˆ’\sqrt{{a}+{x}}\:}\:{where}\:{a}>\mathrm{0}\:{is}\: \\ $$$$\:{a}\:{parameter}. \\ $$

Question Number 149667    Answers: 2   Comments: 0

f (x )= (1/( (√( 1 + sin (x ))) +(√( 1 + cos (x))))) find: Min( f (x)) =?

$$\: \\ $$$${f}\:\left({x}\:\right)=\:\frac{\mathrm{1}}{\:\sqrt{\:\mathrm{1}\:+\:{sin}\:\left({x}\:\right)}\:+\sqrt{\:\mathrm{1}\:+\:{cos}\:\left({x}\right)}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{find}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Min}\left(\:{f}\:\left({x}\right)\right)\:=? \\ $$$$ \\ $$

Question Number 149660    Answers: 1   Comments: 0

Question Number 150362    Answers: 1   Comments: 0

Given that p=(3i+4j) , q=(2iβˆ’j) and r=5iβˆ’j. Express vector r intrems of p and q .

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{p}=\left(\mathrm{3i}+\mathrm{4j}\right)\:,\:\mathrm{q}=\left(\mathrm{2i}βˆ’\mathrm{j}\right)\:\mathrm{and} \\ $$$$\mathrm{r}=\mathrm{5i}βˆ’\mathrm{j}.\:\mathrm{Express}\:\:\mathrm{vector}\:\:\:\mathrm{r}\:\:\mathrm{intrems}\:\mathrm{of} \\ $$$$\mathrm{p}\:\mathrm{and}\:\mathrm{q}\:. \\ $$

Question Number 149638    Answers: 0   Comments: 0

Question Number 149637    Answers: 2   Comments: 0

Question Number 149636    Answers: 1   Comments: 0

Question Number 149634    Answers: 1   Comments: 0

Trouver toutes les fonctions f:Nβ†’R^+ telque βˆ€(a,b)∈N, f(a^2 +b^2 )=f(a^2 )+f(b^2 ) et f(1)=1

$$\mathrm{Trouver}\:\mathrm{toutes}\:\mathrm{les}\:\mathrm{fonctions}\:\mathrm{f}:\mathbb{N}\rightarrow\mathbb{R}^{+} \\ $$$$\mathrm{telque}\:\forall\left(\mathrm{a},\mathrm{b}\right)\in\mathbb{N}, \\ $$$$\mathrm{f}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \right)=\mathrm{f}\left(\mathrm{a}^{\mathrm{2}} \right)+\mathrm{f}\left(\mathrm{b}^{\mathrm{2}} \right)\:\mathrm{et}\:\mathrm{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$

Question Number 152856    Answers: 0   Comments: 2

Monsieur Puissant, je quitte ce forum mathe^ matique de^ finitivement mais sans avoir dit que jβ€²ai adore^ e^ changer avec vous. Bonne continuation et vive les maths !

$$\mathrm{Monsieur}\:\mathrm{Puissant},\:\mathrm{je}\:\mathrm{quitte}\:\mathrm{ce}\:\mathrm{forum} \\ $$$$\mathrm{math}\acute {\mathrm{e}matique}\:\mathrm{d}\acute {\mathrm{e}finitivement}\:\mathrm{mais} \\ $$$$\mathrm{sans}\:\mathrm{avoir}\:\mathrm{dit}\:\mathrm{que}\:\mathrm{j}'\mathrm{ai}\:\mathrm{ador}\acute {\mathrm{e}}\:\acute {\mathrm{e}changer} \\ $$$$\mathrm{avec}\:\mathrm{vous}. \\ $$$$ \\ $$$$\mathrm{Bonne}\:\mathrm{continuation}\:\mathrm{et}\:\mathrm{vive}\:\mathrm{les} \\ $$$$\mathrm{maths}\:! \\ $$

Question Number 152601    Answers: 2   Comments: 1

solve.... lim_( nβ†’βˆž) { Ξ _(k=1) ^n (1 βˆ’(k/n)+(k^( 2) /n^( 2) ) )^( (1/n)) }=? m.n...

$$ \\ $$$$\:\:\:{solve}.... \\ $$$$\:\:{lim}_{\:{n}\rightarrow\infty} \left\{\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}\:βˆ’\frac{{k}}{{n}}+\frac{{k}^{\:\mathrm{2}} }{{n}^{\:\mathrm{2}} }\:\right)^{\:\frac{\mathrm{1}}{{n}}} \right\}=? \\ $$$$\:\:{m}.{n}... \\ $$$$ \\ $$

Question Number 149628    Answers: 1   Comments: 0

Question Number 149625    Answers: 1   Comments: 0

1)∫_0 ^(2Ο€) (1/(a+sin(t)))dt , a>0 2)∫_(2Ο€) ^(4Ο€) (1/(2+sin(t)))dt..

$$\left.\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{2}\pi} \frac{\mathrm{1}}{\mathrm{a}+\mathrm{sin}\left(\mathrm{t}\right)}\mathrm{dt}\:,\:\mathrm{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\int_{\mathrm{2}\pi} ^{\mathrm{4}\pi} \frac{\mathrm{1}}{\mathrm{2}+\mathrm{sin}\left(\mathrm{t}\right)}\mathrm{dt}.. \\ $$

Question Number 149623    Answers: 1   Comments: 0

Question Number 149621    Answers: 1   Comments: 0

if 2^x =3^y =7^z =((42))^(1/3) find (1/x)+(1/y)+(1/z)=?

$$\mathrm{if}\:\:\:\mathrm{2}^{\boldsymbol{{x}}} =\mathrm{3}^{\boldsymbol{{y}}} =\mathrm{7}^{\boldsymbol{{z}}} =\sqrt[{\mathrm{3}}]{\mathrm{42}} \\ $$$$\mathrm{find}\:\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=? \\ $$

Question Number 149608    Answers: 4   Comments: 0

.....K=∫(1/(1+sin^2 (x)))dx......

$$.....\mathrm{K}=\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}...... \\ $$

Question Number 149600    Answers: 1   Comments: 0

Question Number 149599    Answers: 0   Comments: 0

Question Number 149598    Answers: 2   Comments: 0

Suppose that sec x + tan x = ((22)/7) cosec x + cot x = (m/n) (m/n) is in the lowest term . Find m + n .

$${Suppose}\:\:{that}\:\: \\ $$$$\mathrm{sec}\:{x}\:+\:\mathrm{tan}\:{x}\:=\:\frac{\mathrm{22}}{\mathrm{7}} \\ $$$$\mathrm{cosec}\:{x}\:+\:\mathrm{cot}\:{x}\:=\:\frac{{m}}{{n}} \\ $$$$\frac{{m}}{{n}}\:\:{is}\:\:{in}\:\:{the}\:\:{lowest}\:\:{term}\:. \\ $$$${Find}\:\:{m}\:+\:{n}\:. \\ $$

Question Number 149596    Answers: 1   Comments: 0

Without Lβ€²Hopital lim_(xβ†’Ο€/7) ((sin x sin 2x sin 3xβˆ’((√7)/8))/(xβˆ’(Ο€/7))) =?

$$\:\mathrm{Without}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\pi/\mathrm{7}} {\mathrm{lim}}\frac{\mathrm{sin}\:\mathrm{x}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{sin}\:\mathrm{3x}βˆ’\frac{\sqrt{\mathrm{7}}}{\mathrm{8}}}{\mathrm{x}βˆ’\frac{\pi}{\mathrm{7}}}\:=? \\ $$

Question Number 149595    Answers: 2   Comments: 1

Question Number 149588    Answers: 2   Comments: 2

{ ((x + (1/y) = 2)),((y + (1/z) = 2)),((z + (1/x) = 2)) :} β‡’ x;y;z=?

$$\begin{cases}{{x}\:+\:\frac{\mathrm{1}}{{y}}\:=\:\mathrm{2}}\\{{y}\:+\:\frac{\mathrm{1}}{{z}}\:=\:\mathrm{2}}\\{{z}\:+\:\frac{\mathrm{1}}{{x}}\:=\:\mathrm{2}}\end{cases}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$

Question Number 149700    Answers: 2   Comments: 1

  Pg 681      Pg 682      Pg 683      Pg 684      Pg 685      Pg 686      Pg 687      Pg 688      Pg 689      Pg 690   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com