Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 68

Question Number 214656    Answers: 1   Comments: 1

Question Number 214660    Answers: 0   Comments: 0

Question Number 214661    Answers: 1   Comments: 0

Question Number 214646    Answers: 1   Comments: 0

Question Number 214645    Answers: 1   Comments: 0

Question Number 214644    Answers: 1   Comments: 0

((−6)/7)/((−7)/6)

$$\frac{−\mathrm{6}}{\mathrm{7}}/\frac{−\mathrm{7}}{\mathrm{6}} \\ $$

Question Number 214638    Answers: 1   Comments: 0

if the sum of three prime numbers is 130, what is the possible maximum of their product?

$${if}\:{the}\:{sum}\:{of}\:{three}\:{prime}\:{numbers} \\ $$$${is}\:\mathrm{130},\:{what}\:{is}\:{the}\:{possible}\: \\ $$$${maximum}\:{of}\:{their}\:{product}? \\ $$

Question Number 214631    Answers: 1   Comments: 0

why ∫∫_∂D B^→ ∙da^→ =0 B^→ ia magnetic Field

$$\mathrm{why}\:\int\int_{\partial\mathrm{D}} \overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{a}}}=\mathrm{0} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\:\mathrm{ia}\:\mathrm{magnetic}\:\mathrm{Field} \\ $$

Question Number 214629    Answers: 2   Comments: 4

Question Number 214623    Answers: 1   Comments: 1

Q214369

$${Q}\mathrm{214369} \\ $$

Question Number 214622    Answers: 1   Comments: 0

Question Number 214618    Answers: 1   Comments: 0

∫_0 ^(Π/2) ((3(√(tan x)))/((sin x+cos x)^2 ))dx

$$\int_{\mathrm{0}} ^{\Pi/\mathrm{2}} \frac{\mathrm{3}\sqrt{\mathrm{tan}\:{x}}}{\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} \:}{dx} \\ $$

Question Number 214603    Answers: 3   Comments: 0

Question Number 214601    Answers: 2   Comments: 0

$$ \\ $$$$ \\ $$

Question Number 214595    Answers: 0   Comments: 13

$$ \\ $$

Question Number 214587    Answers: 1   Comments: 0

Does Magnetic Monopole really not exist? In maxwell Equation ∫∫_( ∂V) B^→ ∙ da=0 ,B^→ is Magnetic field

$$\mathrm{Does}\:\mathrm{Magnetic}\:\mathrm{Monopole}\:\mathrm{really}\:\mathrm{not}\:\mathrm{exist}? \\ $$$$\mathrm{In}\:\mathrm{maxwell}\:\mathrm{Equation} \\ $$$$\int\int_{\:\partial{V}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\centerdot\:\mathrm{d}\boldsymbol{\mathrm{a}}=\mathrm{0}\:\:,\overset{\rightarrow} {\boldsymbol{\mathrm{B}}}\:\mathrm{is}\:\mathrm{Magnetic}\:\mathrm{field} \\ $$

Question Number 214578    Answers: 1   Comments: 1

Question Number 214563    Answers: 0   Comments: 2

$$ \\ $$

Question Number 214536    Answers: 2   Comments: 4

Question Number 214556    Answers: 0   Comments: 4

Hey Tinku Tara, I got some plot issues. When I click the plot button, it displays the error message “Check if the variable name is x and you are logged in.”.

$$\mathrm{Hey}\:\mathrm{Tinku}\:\mathrm{Tara}, \\ $$$$\mathrm{I}\:\mathrm{got}\:\mathrm{some}\:\mathrm{plot}\:\mathrm{issues}. \\ $$$$\mathrm{When}\:\mathrm{I}\:\mathrm{click}\:\mathrm{the}\:\mathrm{plot}\:\mathrm{button},\:\mathrm{it}\:\mathrm{displays}\:\mathrm{the}\:\mathrm{error}\:\mathrm{message} \\ $$$$``\mathrm{Check}\:\mathrm{if}\:\mathrm{the}\:\mathrm{variable}\:\mathrm{name}\:\mathrm{is}\:{x}\:\mathrm{and}\:\mathrm{you}\:\mathrm{are}\:\mathrm{logged}\:\mathrm{in}.''. \\ $$

Question Number 214560    Answers: 1   Comments: 0

∫_1 ^( x) ((ln x)/( (√(1−(ln x)^2 ))))dx

$$\int_{\mathrm{1}} ^{\:\:{x}} \frac{\mathrm{ln}\:{x}}{\:\sqrt{\mathrm{1}−\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} }}{dx} \\ $$

Question Number 214514    Answers: 0   Comments: 7

$$ \\ $$

Question Number 214511    Answers: 0   Comments: 0

Let′s R(z) define as R(z)=((π ∫_0 ^( z) f^2 (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt)) and both integral ∫_0 ^( ∞) f^( 2) (t)dt , ∫_0 ^( ∞) f(t)(√(1+(f^((1)) (t))^2 ))dt =∞ lim_(z→∞) ((π ∫_0 ^( z) f^( 2) (t)dt)/(2π ∫_0 ^( z) f(t)(√(1+(f^((1)) (t))^2 ))dt)) =lim_(z→∞) ((π f(z))/(2π (√(1+(f^((1)) (z))^2 )))) ..??

$$\mathrm{Let}'\mathrm{s}\:{R}\left({z}\right)\:\mathrm{define}\:\mathrm{as}\: \\ $$$${R}\left({z}\right)=\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}^{\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$\mathrm{and}\:\mathrm{both}\:\mathrm{integral} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}\:,\:\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}\:=\infty \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:\int_{\mathrm{0}} ^{\:{z}} {f}^{\:\mathrm{2}} \left({t}\right)\mathrm{d}{t}}{\mathrm{2}\pi\:\int_{\mathrm{0}} ^{\:{z}} \:{f}\left({t}\right)\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({t}\right)\right)^{\mathrm{2}} }\mathrm{d}{t}} \\ $$$$=\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi\:{f}\left({z}\right)}{\mathrm{2}\pi\:\sqrt{\mathrm{1}+\left({f}^{\left(\mathrm{1}\right)} \left({z}\right)\right)^{\mathrm{2}} }}\:..?? \\ $$

Question Number 214509    Answers: 1   Comments: 4

Find the volume of the solid of revolution generated by rotating the area bounded by y=x(2−x) and y=x about the y−axis.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{of}\:\mathrm{revolution} \\ $$$$\mathrm{generated}\:\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:{y}={x}\left(\mathrm{2}−{x}\right)\:\mathrm{and}\:{y}={x}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}. \\ $$

Question Number 214499    Answers: 3   Comments: 1

{ ((x^2 + (x + 3y) = 11)),((y^2 + (y + 3x) = 29)) :} ⇒ x + y = ?

$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{x}\:\:+\:\:\mathrm{3y}\right)\:\:=\:\:\mathrm{11}}\\{\mathrm{y}^{\mathrm{2}} \:\:+\:\:\left(\mathrm{y}\:\:+\:\:\mathrm{3x}\right)\:\:=\:\:\mathrm{29}}\end{cases}\:\:\:\:\:\Rightarrow\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:? \\ $$

Question Number 214498    Answers: 1   Comments: 0

  Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com