Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 675
Question Number 149885 Answers: 1 Comments: 0
$${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}} \\ $$$${to}\:{show}\:{that}\:: \\ $$$$\forall\:{n}\in\mathbb{N}^{\ast} ,\:\mathrm{2}{nI}_{{n}} =\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}−\mathrm{1}} +\frac{\mathrm{2}^{{n}} }{\:\sqrt{\mathrm{2}}} \\ $$$$\left({I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}{n}−\mathrm{1}} {x}}×\frac{\mathrm{1}}{{cos}^{\mathrm{2}} {x}}\right){dx}\right)... \\ $$
Question Number 149883 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\sqrt[{\mathrm{3}}]{\mathrm{2}+\sqrt{\mathrm{5}}}+\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt{\mathrm{5}}}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{rational}\:\mathrm{number} \\ $$
Question Number 149876 Answers: 2 Comments: 0
Question Number 149871 Answers: 1 Comments: 0
$${lim}_{{x}\rightarrow\mathrm{2}} \frac{\mathrm{3}^{{x}!} −\mathrm{9}}{{x}−\mathrm{2}} \\ $$
Question Number 149870 Answers: 0 Comments: 3
$$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{m};\mathrm{n}\in\mathbb{R}^{+} \:\:\mathrm{then}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{b}^{−\mathrm{1}} }{\left(\mathrm{m}\sqrt{\mathrm{x}}\:+\:\mathrm{n}\sqrt{\mathrm{y}}\right)^{\mathrm{2}} }\:\geqslant\:\frac{\mathrm{3}}{\left(\mathrm{m}\:+\:\mathrm{n}\right)^{\mathrm{2}} } \\ $$
Question Number 149852 Answers: 0 Comments: 0
What angle is subtended at the centre of the Earth by an arc of the equator of length 1) 2002km 2) 30030km
Question Number 149868 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\:\:\mathrm{and}\:\:\mathrm{c}\:\:\mathrm{are}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\:\mathrm{a} \\ $$$$\mathrm{cuboid}\:\mathrm{with}\:\mathrm{the}\:\mathrm{diagonal}\:\boldsymbol{\mathrm{d}}\:\mathrm{then}\:\mathrm{prove} \\ $$$$\mathrm{d}\:\leqslant\:\sqrt{\frac{\mathrm{a}^{\mathrm{3}} }{\mathrm{b}}\:+\:\frac{\mathrm{b}^{\mathrm{3}} }{\mathrm{c}}\:+\:\frac{\mathrm{c}^{\mathrm{3}} }{\mathrm{a}}} \\ $$
Question Number 150356 Answers: 3 Comments: 0
$$\:{solve}... \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Arcsin}\:\left(\sqrt{{x}}\:\right)}{\mathrm{1}−{x}\:+\:{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$
Question Number 149865 Answers: 1 Comments: 0
Question Number 149830 Answers: 1 Comments: 0
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−...}}}}{{sin}\:\left({sin}\:\left({sin}\:\left(....{x}\right)\right.\right.}=? \\ $$
Question Number 149955 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{a}\:\mathrm{group}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{8}\:\mathrm{men}\:\mathrm{and}\:\mathrm{6}\:\mathrm{women}, \\ $$$$\mathrm{in}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{a}\:\mathrm{committee}\:\mathrm{of} \\ $$$$\mathrm{5}\:\mathrm{be}\:\mathrm{selected}\:\mathrm{if}: \\ $$$$\left.\:\:\:\:\:\:\mathrm{i}\right)\:\mathrm{the}\:\mathrm{committee}\:\mathrm{is}\:\mathrm{to}\:\mathrm{consist}\:\mathrm{of}\:\mathrm{3}\:\mathrm{men} \\ $$$$\mathrm{and}\:\mathrm{3}\:\mathrm{women}. \\ $$$$\left.\:\:\:\:\:\:\mathrm{ii}\right)\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{restrictions}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{men}\:\mathrm{and}\:\mathrm{women}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{committee}. \\ $$$$\left.\:\:\:\:\:\:\:\mathrm{iii}\right)\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{man} \\ $$
Question Number 149817 Answers: 0 Comments: 0
$$\:\:\:{x}^{\mathrm{3}} −{x}={c} \\ $$$$\:\:{let}\:\:{x}={t}+{h} \\ $$$${t}^{\mathrm{3}} +\mathrm{3}{ht}^{\mathrm{2}} +\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right){t}+{h}^{\mathrm{3}} −{h}−{c}=\mathrm{0} \\ $$$${let}\:\:{t}\left({t}^{\mathrm{2}} +\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)={p} \\ $$$$\mathrm{3}{ht}^{\mathrm{2}} +{h}^{\mathrm{3}} −{h}−{c}={q} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{2}} =\frac{{q}+{c}+{h}−{h}^{\mathrm{3}} }{\mathrm{3}{h}} \\ $$$${p}+{q}=\mathrm{0} \\ $$$$\left(\frac{{q}+{c}+{h}−{h}^{\mathrm{3}} }{\mathrm{3}{h}}\right)\left(\frac{{q}+{c}+{h}−{h}^{\mathrm{3}} }{\mathrm{3}{h}}+\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:={q}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left({q}+{c}+{h}−{h}^{\mathrm{3}} \right)\left({q}+{c}−\mathrm{2}{h}+\mathrm{8}{h}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{27}{h}^{\mathrm{3}} {q}^{\mathrm{2}} \\ $$$${let}\:\:{q}+{c}−\mathrm{2}{h}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\mathrm{64}{h}^{\mathrm{4}} \left(\mathrm{3}−{h}^{\mathrm{2}} \right)=\mathrm{27}\left(\mathrm{2}{h}−{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{8}{h}^{\mathrm{2}} \sqrt{\mathrm{3}−{h}^{\mathrm{2}} }=\mathrm{3}\sqrt{\mathrm{3}}\left(\mathrm{2}{h}−{c}\right) \\ $$$${let}\:\:{h}=\sqrt{\mathrm{3}}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\:\mathrm{8sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:\theta=\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\theta−{c} \\ $$$$\mathrm{4sin}\:\theta\mathrm{sin}\:\mathrm{2}\theta=\mathrm{2}\sqrt{\mathrm{3}}\mathrm{sin}\:\theta−{c} \\ $$$$\mathrm{2sin}\:\theta\left(\sqrt{\mathrm{3}}−\mathrm{2sin}\:\mathrm{2}\theta\right)={c} \\ $$$$...... \\ $$
Question Number 149813 Answers: 1 Comments: 1
$$\int\left(−\mathrm{1}\right)^{\left[\boldsymbol{\mathrm{x}}\right]} \:\mathrm{dx}\:=\:? \\ $$
Question Number 149809 Answers: 2 Comments: 0
Question Number 149854 Answers: 0 Comments: 11
Question Number 149853 Answers: 1 Comments: 0
Question Number 149805 Answers: 1 Comments: 0
Question Number 149795 Answers: 1 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}\centerdot\mathrm{3}\centerdot\mathrm{5}\centerdot\mathrm{7}\centerdot\:...\:\centerdot\left(\mathrm{2n}-\mathrm{1}\right)}{\mathrm{2}\centerdot\mathrm{4}\centerdot\mathrm{6}\centerdot\:...\:\centerdot\mathrm{2n}}\:=\:? \\ $$
Question Number 149793 Answers: 0 Comments: 1
$$\mathrm{Compare}: \\ $$$$\mathrm{tan}\left(\mathrm{11}°\right)\:\:\:\mathrm{and}\:\:\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Question Number 149789 Answers: 0 Comments: 0
$${form} \\ $$
Question Number 149782 Answers: 2 Comments: 0
Question Number 149781 Answers: 1 Comments: 2
$$\mathrm{a}\:\:−\:\:\sqrt{\frac{\mathrm{20}}{\mathrm{a}}}\:=\:\mathrm{7}\:\:\Rightarrow\:\:\sqrt{\mathrm{5a}}\:−\:\mathrm{a}\:=\:? \\ $$
Question Number 149778 Answers: 1 Comments: 2
$$\mathrm{Simplify}: \\ $$$$\sqrt{\mathrm{8}\sqrt{\mathrm{24}\sqrt{\mathrm{8}\sqrt{\mathrm{24}...}}}}\:\:=\:? \\ $$
Question Number 149775 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{5}^{\boldsymbol{\mathrm{x}}} \:=\:\left(\mathrm{3}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \right)^{\mathrm{2}} \\ $$
Question Number 149773 Answers: 1 Comments: 0
Question Number 149772 Answers: 0 Comments: 0
Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675 Pg 676 Pg 677 Pg 678 Pg 679
Terms of Service
Privacy Policy
Contact: info@tinkutara.com