Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 675

Question Number 150647    Answers: 1   Comments: 0

Question Number 150646    Answers: 1   Comments: 0

Let š›ŒāˆˆR fixed.Solve for real numbers: { ((ax + by = 2Ī» + 1)),((ax^2 + by^2 = 4Ī» + 1)),((ax^3 + by^3 = 8Ī» + 1)),((ax^4 + by^4 = 16Ī» + 1)) :}

$$\boldsymbol{\mathrm{L}}\mathrm{et}\:\boldsymbol{\lambda}\in\mathbb{R}\:\mathrm{fixed}.\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{ax}\:+\:\mathrm{by}\:=\:\mathrm{2}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{by}^{\mathrm{2}} \:=\:\mathrm{4}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{by}^{\mathrm{3}} \:=\:\mathrm{8}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{by}^{\mathrm{4}} \:=\:\mathrm{16}\lambda\:+\:\mathrm{1}}\end{cases} \\ $$

Question Number 150652    Answers: 0   Comments: 5

If f(3x+1)+f(5x+1)=x^3 -2 Find f(1)+f(4)+f(16)=?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{3x}+\mathrm{1}\right)+\mathrm{f}\left(\mathrm{5x}+\mathrm{1}\right)=\mathrm{x}^{\mathrm{3}} -\mathrm{2} \\ $$$$\mathrm{Find}\:\:\mathrm{f}\left(\mathrm{1}\right)+\mathrm{f}\left(\mathrm{4}\right)+\mathrm{f}\left(\mathrm{16}\right)=? \\ $$

Question Number 150641    Answers: 2   Comments: 1

1+(√3^x )=2^x x=?

$$\mathrm{1}+\sqrt{\mathrm{3}^{\mathrm{x}} }=\mathrm{2}^{\mathrm{x}} \\ $$$$\mathrm{x}=? \\ $$

Question Number 150628    Answers: 1   Comments: 0

Question Number 150627    Answers: 1   Comments: 0

∫_0 ^1 (((āˆ’1)^(E((1/x))) dx)/x)

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(āˆ’\mathrm{1}\right)^{{E}\left(\frac{\mathrm{1}}{{x}}\right)} {dx}}{{x}} \\ $$

Question Number 150626    Answers: 1   Comments: 0

S(x)=Ī£_(n=1) ^āˆž ln(1+(1/n))x^n S(āˆ’1)= ?.. please help..

$${S}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right){x}^{{n}} \\ $$$${S}\left(āˆ’\mathrm{1}\right)=\:?.. \\ $$$${please}\:{help}.. \\ $$

Question Number 150609    Answers: 0   Comments: 0

I thought this as more basic: ((sinA)/a)=(1/(2R)) ((cosA)/a)=((b^2 +c^2 āˆ’a^2 )/(2abc)) ⇒ tanA=((abc)/(R(b^2 +c^2 āˆ’a^2 )))

$${I}\:{thought}\:{this}\:{as}\:{more}\:{basic}: \\ $$$$\frac{{sinA}}{{a}}=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\frac{{cosA}}{{a}}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} āˆ’{a}^{\mathrm{2}} }{\mathrm{2}{abc}} \\ $$$$\Rightarrow\:\:\boldsymbol{{tanA}}=\frac{\boldsymbol{{abc}}}{\boldsymbol{{R}}\left(\boldsymbol{{b}}^{\mathrm{2}} +\boldsymbol{{c}}^{\mathrm{2}} āˆ’\boldsymbol{{a}}^{\mathrm{2}} \right)} \\ $$

Question Number 150603    Answers: 1   Comments: 0

Compare: x=sin(165°) y=cos(165°) z=tan(165°)

$$\mathrm{Compare}: \\ $$$$\boldsymbol{\mathrm{x}}=\mathrm{sin}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{cos}\left(\mathrm{165}°\right) \\ $$$$\boldsymbol{\mathrm{z}}=\mathrm{tan}\left(\mathrm{165}°\right) \\ $$

Question Number 150601    Answers: 1   Comments: 0

Question Number 150600    Answers: 3   Comments: 0

xyz = 10 x + y + z = - 7 xy + xz + yz = 2 Find ((xy)/z) + ((xz)/y) + ((yz)/x) = ?

$$\mathrm{xyz}\:=\:\mathrm{10} \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:-\:\mathrm{7} \\ $$$$\mathrm{xy}\:+\:\mathrm{xz}\:+\:\mathrm{yz}\:=\:\mathrm{2} \\ $$$$\mathrm{Find}\:\:\frac{\mathrm{xy}}{\mathrm{z}}\:+\:\frac{\mathrm{xz}}{\mathrm{y}}\:+\:\frac{\mathrm{yz}}{\mathrm{x}}\:=\:? \\ $$

Question Number 150599    Answers: 1   Comments: 2

lim_(x→0) x^x = ?

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{x}}} \:=\:? \\ $$

Question Number 150597    Answers: 1   Comments: 0

Question Number 150596    Answers: 2   Comments: 1

Question Number 150594    Answers: 1   Comments: 0

The function f(x)=e^x +x being differentiable and one to one , has a differentiable inverse f^(āˆ’1) (x). The value of (d/dx) (f^(āˆ’1) ) at point f(ln 2) is __

$$\mathrm{The}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} +\mathrm{x}\:\mathrm{being} \\ $$$$\mathrm{differentiable}\:\mathrm{and}\:\mathrm{one}\:\mathrm{to}\:\mathrm{one}\:, \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{inverse}\:\mathrm{f}^{āˆ’\mathrm{1}} \left(\mathrm{x}\right). \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\frac{{d}}{{dx}}\:\left({f}^{āˆ’\mathrm{1}} \right)\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\mathrm{f}\left(\mathrm{ln}\:\mathrm{2}\right)\:\mathrm{is}\:\_\_ \\ $$

Question Number 150585    Answers: 0   Comments: 5

lim_(x→0) ((∫_0 ^Ļ€ cosx^2 dx)/x)=?? Help

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\underset{\mathrm{0}} {\overset{\pi} {\int}}{cosx}^{\mathrm{2}} {dx}}{{x}}=?? \\ $$$${Help} \\ $$

Question Number 150590    Answers: 1   Comments: 0

Let g is the inverse function of f and f ′(x)=(x^(10) /(1+x^2 )). If g(2)= a then g ′(2) =__

$$\mathrm{Let}\:\mathrm{g}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of} \\ $$$$\mathrm{f}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{10}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\:\mathrm{If}\:\mathrm{g}\left(\mathrm{2}\right)=\:{a}\:\mathrm{then} \\ $$$$\mathrm{g}\:'\left(\mathrm{2}\right)\:=\_\_\: \\ $$

Question Number 150571    Answers: 3   Comments: 0

Find A and prove that 2021∈A if abcd^(āˆ’) ∈A, (a/(d + 1)) = ((c - b)/c) = ((a + b)/(b + c))

$$\mathrm{Find}\:\boldsymbol{\mathrm{A}}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{2021}\in\boldsymbol{\mathrm{A}}\:\mathrm{if} \\ $$$$\overline {\mathrm{abcd}}\in\boldsymbol{\mathrm{A}},\:\:\frac{\mathrm{a}}{\mathrm{d}\:+\:\mathrm{1}}\:=\:\frac{\mathrm{c}\:-\:\mathrm{b}}{\mathrm{c}}\:=\:\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{b}\:+\:\mathrm{c}} \\ $$

Question Number 150567    Answers: 4   Comments: 0

Question Number 150560    Answers: 3   Comments: 0

Question Number 150559    Answers: 1   Comments: 0

Solve for natural numbers: x^3 + y^4 = 2022

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{natural}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{4}} \:=\:\mathrm{2022} \\ $$

Question Number 150558    Answers: 1   Comments: 0

Solve for integers: (6x + 5y^2 )(4z + x)(2y^2 + 3z) = 2021

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$\left(\mathrm{6x}\:+\:\mathrm{5y}^{\mathrm{2}} \right)\left(\mathrm{4z}\:+\:\mathrm{x}\right)\left(\mathrm{2y}^{\mathrm{2}} \:+\:\mathrm{3z}\right)\:=\:\mathrm{2021} \\ $$

Question Number 150554    Answers: 1   Comments: 0

Show that n_C_r =((n(nāˆ’1)(nāˆ’2)...(nāˆ’r+1))/(r!))

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{n}_{\mathrm{C}_{\mathrm{r}} } =\frac{\mathrm{n}\left(\mathrm{n}āˆ’\mathrm{1}\right)\left(\mathrm{n}āˆ’\mathrm{2}\right)...\left(\mathrm{n}āˆ’\mathrm{r}+\mathrm{1}\right)}{\mathrm{r}!} \\ $$

Question Number 150550    Answers: 0   Comments: 3

Question Number 150549    Answers: 0   Comments: 0

Prove that: āˆ€n∈N Ī _(k=1) ^n k! āˆ™ k^(nāˆ’k+1) ≤ (((n+2)/3))^(nāˆ™(n+1))

$$\mathrm{Prove}\:\mathrm{that}:\:\:\forall\mathrm{n}\in\mathbb{N} \\ $$$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\prod}}\mathrm{k}!\:\centerdot\:\mathrm{k}^{\boldsymbol{\mathrm{n}}āˆ’\boldsymbol{\mathrm{k}}+\mathrm{1}} \:\leqslant\:\left(\frac{\mathrm{n}+\mathrm{2}}{\mathrm{3}}\right)^{\boldsymbol{\mathrm{n}}\centerdot\left(\boldsymbol{\mathrm{n}}+\mathrm{1}\right)} \\ $$

Question Number 150548    Answers: 0   Comments: 0

For k<N fixed and š›‚>0 then: lim_(nā†’āˆž) (1/( (√n^š›‚ ))) āˆ™ (((Ī _(i=1) ^k (n+k+i))/(Ī _(i=1) ^k (n+i))))^n^š›‚

$$\mathrm{For}\:\:\boldsymbol{\mathrm{k}}<\mathbb{N}\:\:\mathrm{fixed}\:\:\mathrm{and}\:\:\boldsymbol{\alpha}>\mathrm{0}\:\:\mathrm{then}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}^{\boldsymbol{\alpha}} }}\:\centerdot\:\left(\frac{\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{k}}} {\prod}}\left(\mathrm{n}+\mathrm{k}+\mathrm{i}\right)}{\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{k}}} {\prod}}\left(\mathrm{n}+\mathrm{i}\right)}\right)^{\boldsymbol{\mathrm{n}}^{\boldsymbol{\alpha}} } \\ $$

  Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676      Pg 677      Pg 678      Pg 679   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com