Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 675

Question Number 150864    Answers: 1   Comments: 0

Question Number 150862    Answers: 0   Comments: 0

Question Number 150861    Answers: 1   Comments: 0

Find the solution of : {_(x^2 +3xy+2y^2 −4 = 0) ^(2x^2 −2xy−3y^2 +7 = 0) Please show your working...

$${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:: \\ $$$$\left\{_{{x}^{\mathrm{2}} +\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} −\mathrm{4}\:=\:\mathrm{0}} ^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{7}\:=\:\mathrm{0}} \right. \\ $$$${Please}\:\:{show}\:\:{your}\:\:{working}... \\ $$

Question Number 150859    Answers: 0   Comments: 0

Question Number 150853    Answers: 0   Comments: 2

log_(2021) (√(x : (√(x : (√(x :..)))))) = 674 find x=?

$$\mathrm{log}_{\mathrm{2021}} \:\sqrt{\mathrm{x}\::\:\sqrt{\mathrm{x}\::\:\sqrt{\mathrm{x}\::..}}}\:=\:\mathrm{674} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 150852    Answers: 0   Comments: 0

x;y;z>0 and x^2 +y^2 +z^2 =3 prove that xyz ≤ (((x + y + z - 1)/2))^2 ≤ 1

$$\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{xyz}\:\leqslant\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:-\:\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:\leqslant\:\mathrm{1} \\ $$

Question Number 150841    Answers: 2   Comments: 0

∫_( 0) ^( ∞) ((ln(1+a^2 x^2 ))/(1+b^2 x^2 )) dx = ?

$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{b}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$

Question Number 150840    Answers: 1   Comments: 0

∫_( 0) ^( ∞) ((arctan(x))/(x(x^2 +x+1))) dx = ?

$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dx}\:=\:? \\ $$

Question Number 150839    Answers: 2   Comments: 0

e^x + y = x^2 y^2 find the expression for (dy/dx)

$$\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{for}\:\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$

Question Number 150838    Answers: 1   Comments: 0

Question Number 150828    Answers: 2   Comments: 0

∫_0 ^( ∞) (( sin^( 2) (x ))/(x(√x))) dx=^? (√π)

$$ \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{2}} \left({x}\:\right)}{{x}\sqrt{{x}}}\:{dx}\overset{?} {=}\:\sqrt{\pi} \\ $$

Question Number 150827    Answers: 0   Comments: 0

Question Number 150807    Answers: 5   Comments: 0

For matris solution: { ((2x - 3y = 8)),((x + 5y = - 9)) :}

$$\mathrm{For}\:\mathrm{matris}\:\mathrm{solution}: \\ $$$$\begin{cases}{\mathrm{2x}\:-\:\mathrm{3y}\:=\:\mathrm{8}}\\{\mathrm{x}\:+\:\mathrm{5y}\:=\:-\:\mathrm{9}}\end{cases} \\ $$

Question Number 150946    Answers: 0   Comments: 0

Question Number 150944    Answers: 4   Comments: 3

Question Number 150804    Answers: 1   Comments: 0

Question Number 150794    Answers: 0   Comments: 0

Question Number 150793    Answers: 0   Comments: 2

(R−r)^2 + R^2 = (R + r)^2 ⇔ R^2 + r^2 −2rR + R^2 = R^2 + r^2 +2rR ⇒ R^2 = 4rR ⇒ r = (R/4) = 1cm A_S = πr^2 = π×1cm^2 = πcm^2

$$\left({R}−{r}\right)^{\mathrm{2}} \:+\:{R}^{\mathrm{2}} \:=\:\left({R}\:+\:{r}\right)^{\mathrm{2}} \:\Leftrightarrow \\ $$$${R}^{\mathrm{2}} \:+\:{r}^{\mathrm{2}} −\mathrm{2}{rR}\:+\:{R}^{\mathrm{2}} \:=\:{R}^{\mathrm{2}} \:+\:{r}^{\mathrm{2}} \:+\mathrm{2}{rR}\:\Rightarrow \\ $$$${R}^{\mathrm{2}} \:=\:\mathrm{4}{rR}\:\Rightarrow\:{r}\:=\:\frac{{R}}{\mathrm{4}}\:=\:\mathrm{1}{cm} \\ $$$$\mathscr{A}_{{S}} \:=\:\pi{r}^{\mathrm{2}} \:=\:\pi×\mathrm{1}{cm}^{\mathrm{2}} \:=\:\pi{cm}^{\mathrm{2}} \\ $$

Question Number 150789    Answers: 1   Comments: 0

Question Number 150786    Answers: 1   Comments: 0

Question Number 150801    Answers: 0   Comments: 5

Question Number 150797    Answers: 2   Comments: 0

x;y∈N ((18^((x^2 + y^2 )/2) )/9^(xy) ) = 2592 ⇒ find xy=?

$$\mathrm{x};\mathrm{y}\in\mathbb{N} \\ $$$$\frac{\mathrm{18}^{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\boldsymbol{\mathrm{y}}^{\mathrm{2}} }{\mathrm{2}}} }{\mathrm{9}^{\boldsymbol{\mathrm{xy}}} }\:=\:\mathrm{2592}\:\:\Rightarrow\:\mathrm{find}\:\:\boldsymbol{\mathrm{xy}}=? \\ $$

Question Number 150769    Answers: 1   Comments: 0

((1^3 +2^3 +3^3 +4^3 +...+x^3 )/(1∙4+2∙7+3∙10+...+x(3x+1))) = 2021 find x=?

$$\frac{\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +\mathrm{4}^{\mathrm{3}} +...+\boldsymbol{\mathrm{x}}^{\mathrm{3}} }{\mathrm{1}\centerdot\mathrm{4}+\mathrm{2}\centerdot\mathrm{7}+\mathrm{3}\centerdot\mathrm{10}+...+\boldsymbol{\mathrm{x}}\left(\mathrm{3}\boldsymbol{\mathrm{x}}+\mathrm{1}\right)}\:=\:\mathrm{2021} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$

Question Number 150761    Answers: 6   Comments: 0

Question Number 150783    Answers: 0   Comments: 0

The current in the windings on a toroid is 2A. There are 400turns and the mean circumferential length is 40cm. With the aid of a search coil and charge measuring instrument,the magnetic field is found to be 1.0T. calculate: i)magnetic intensity ii)magnetization iii)the equivalent surface current

$$\mathrm{The}\:\mathrm{current}\:\mathrm{in}\:\mathrm{the}\:\mathrm{windings}\:\mathrm{on}\:\mathrm{a}\:\mathrm{toroid} \\ $$$$\mathrm{is}\:\mathrm{2A}.\:\mathrm{There}\:\mathrm{are}\:\mathrm{400turns}\:\mathrm{and}\:\mathrm{the}\:\mathrm{mean} \\ $$$$\mathrm{circumferential}\:\mathrm{length}\:\mathrm{is}\:\mathrm{40cm}.\:\mathrm{With} \\ $$$$\mathrm{the}\:\mathrm{aid}\:\mathrm{of}\:\mathrm{a}\:\mathrm{search}\:\mathrm{coil}\:\mathrm{and}\:\mathrm{charge} \\ $$$$\mathrm{measuring}\:\mathrm{instrument},\mathrm{the}\:\mathrm{magnetic} \\ $$$$\mathrm{field}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be}\:\mathrm{1}.\mathrm{0T}.\:\mathrm{calculate}: \\ $$$$\left.\mathrm{i}\left.\right)\mathrm{magnetic}\:\mathrm{intensity}\:\mathrm{ii}\right)\mathrm{magnetization} \\ $$$$\left.\mathrm{iii}\right)\mathrm{the}\:\mathrm{equivalent}\:\mathrm{surface}\:\mathrm{current} \\ $$$$ \\ $$$$ \\ $$

Question Number 150759    Answers: 1   Comments: 0

lim_(x→0) ((log(e+x)−1)/x)=? please help..

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{log}\left({e}+{x}\right)−\mathrm{1}}{{x}}=? \\ $$$${please}\:{help}.. \\ $$

  Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676      Pg 677      Pg 678      Pg 679   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com