Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 674

Question Number 145954    Answers: 1   Comments: 0

1+i+i^2 +i^3 +...+i^(99) =?

$$\mathrm{1}+{i}+{i}^{\mathrm{2}} +{i}^{\mathrm{3}} +...+{i}^{\mathrm{99}} =? \\ $$

Question Number 145953    Answers: 1   Comments: 4

Question Number 145951    Answers: 1   Comments: 0

Σ_(n≥1) (((−1)^n )/n)=??

$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}=?? \\ $$

Question Number 145947    Answers: 1   Comments: 1

Question Number 145946    Answers: 1   Comments: 0

the type of singular point of f(z)=((cos(πz))/((1−z^3 ))) is ?

$${the}\:{type}\:{of}\:{singular}\:{point}\:{of}\:{f}\left({z}\right)=\frac{{cos}\left(\pi{z}\right)}{\left(\mathrm{1}−{z}^{\mathrm{3}} \right)}\:{is}\:? \\ $$$$ \\ $$$$ \\ $$

Question Number 145944    Answers: 1   Comments: 1

Question Number 145942    Answers: 1   Comments: 0

Question Number 145941    Answers: 1   Comments: 0

find ∫_0 ^∞ e^(−3x) log(1+x^3 )dx

$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{3}{x}} {log}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$

Question Number 145940    Answers: 0   Comments: 0

find ∫_0 ^1 e^(−x) log(1−x^4 )dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {log}\left(\mathrm{1}−{x}^{\mathrm{4}} \right){dx} \\ $$

Question Number 145939    Answers: 0   Comments: 0

Ψ(x)=ch(sinx) developp Ψ at fourier serie

$$\Psi\left({x}\right)={ch}\left({sinx}\right) \\ $$$${developp}\:\Psi\:{at}\:{fourier}\:{serie} \\ $$

Question Number 145938    Answers: 1   Comments: 0

g(x)=cos(arctanx) if g(x)=Σ a_n x^n determine the sequence a_n

$${g}\left({x}\right)={cos}\left({arctanx}\right) \\ $$$${if}\:{g}\left({x}\right)=\Sigma\:{a}_{{n}} {x}^{{n}} \:{determine}\:{the} \\ $$$${sequence}\:{a}_{{n}} \\ $$

Question Number 145936    Answers: 0   Comments: 0

g(x)=arctan(cosx) developp f at fourier serie

$${g}\left({x}\right)={arctan}\left({cosx}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$

Question Number 145934    Answers: 0   Comments: 0

Question Number 145918    Answers: 1   Comments: 0

Question Number 145911    Answers: 4   Comments: 1

Question Number 145889    Answers: 0   Comments: 2

Question Number 145888    Answers: 1   Comments: 0

Question Number 145886    Answers: 0   Comments: 0

((x(√((129934)/(14348057))))/π^2 ) = e^π then ((√(x−96))/4) =?

$$\frac{\mathrm{x}\sqrt{\frac{\mathrm{129934}}{\mathrm{14348057}}}}{\pi^{\mathrm{2}} }\:=\:\mathrm{e}^{\pi} \:\mathrm{then}\: \\ $$$$\:\frac{\sqrt{\mathrm{x}−\mathrm{96}}}{\mathrm{4}}\:=?\: \\ $$

Question Number 145884    Answers: 0   Comments: 0

Question Number 146041    Answers: 3   Comments: 0

z′ = 2iz + (3−3i) geometrical representation is?

$${z}'\:=\:\mathrm{2}{iz}\:+\:\left(\mathrm{3}−\mathrm{3}{i}\right) \\ $$$${geometrical}\:{representation}\:{is}? \\ $$

Question Number 145879    Answers: 1   Comments: 0

Question Number 145869    Answers: 2   Comments: 0

Let A and B be 2 events such that P(A)=0.4, P(B^− /A)=0.7 and P(B/A^− )=0.6, then find (i)P(B^− /A^− ) (ii)P(A∩B) (iii) P(B) (iv)P(A∪B)

$$\mathrm{Let}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{be}\:\mathrm{2}\:\mathrm{events}\:\mathrm{such}\:\mathrm{that}\:\mathrm{P}\left(\mathrm{A}\right)=\mathrm{0}.\mathrm{4},\:\mathrm{P}\left(\overset{−} {\mathrm{B}}/\mathrm{A}\right)=\mathrm{0}.\mathrm{7} \\ $$$$\:\mathrm{and}\:\mathrm{P}\left(\mathrm{B}/\overset{−} {\mathrm{A}}\right)=\mathrm{0}.\mathrm{6},\:\mathrm{then}\:\mathrm{find} \\ $$$$\left({i}\right)\mathrm{P}\left(\overset{−} {\mathrm{B}}/\overset{−} {\mathrm{A}}\right)\:\:\left({ii}\right)\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}\right)\:\:\:\left({iii}\right)\:\mathrm{P}\left(\mathrm{B}\right)\:\:\left({iv}\right)\mathrm{P}\left(\mathrm{A}\cup\mathrm{B}\right) \\ $$

Question Number 145863    Answers: 1   Comments: 0

Question Number 145855    Answers: 0   Comments: 0

Question Number 145856    Answers: 1   Comments: 2

Question Number 145852    Answers: 1   Comments: 0

sin(π/(24))∙cos(π/(24))∙cos(π/(12))=?

$${sin}\frac{\pi}{\mathrm{24}}\centerdot{cos}\frac{\pi}{\mathrm{24}}\centerdot{cos}\frac{\pi}{\mathrm{12}}=? \\ $$

  Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676      Pg 677      Pg 678   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com