Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 674

Question Number 150056    Answers: 2   Comments: 1

Question Number 150053    Answers: 0   Comments: 0

let x;y;z;t>0 and x+y+z+t=4 prove that (4/((xyzt)^2 )) + 3 ≥ (√(45 + x^4 + y^4 + z^4 + t^4 ))

$$\mathrm{let}\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}+\mathrm{t}=\mathrm{4} \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{4}}{\left(\mathrm{xyzt}\right)^{\mathrm{2}} }\:+\:\mathrm{3}\:\geqslant\:\sqrt{\mathrm{45}\:+\:\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{y}^{\mathrm{4}} \:+\:\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{t}^{\mathrm{4}} } \\ $$

Question Number 150045    Answers: 0   Comments: 0

Question Number 150044    Answers: 2   Comments: 0

Given f(((2x−3)/(2x+1)))+f(((2x+3)/(1−2x)))= 4x f(x)=?

$$\:\mathrm{Given}\:\mathrm{f}\left(\frac{\mathrm{2x}−\mathrm{3}}{\mathrm{2x}+\mathrm{1}}\right)+\mathrm{f}\left(\frac{\mathrm{2x}+\mathrm{3}}{\mathrm{1}−\mathrm{2x}}\right)=\:\mathrm{4x} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$

Question Number 150040    Answers: 0   Comments: 0

Let a,b,c be positive real numbers such that a+b+c=1 .Prove that ((ab)/(1−c^2 )) +((bc)/(1−a^2 ))+((ca)/(1−b^2 )) ≤ (3/8)

$$\mathrm{Let}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{1}\:.\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\:\frac{\mathrm{ab}}{\mathrm{1}−\mathrm{c}^{\mathrm{2}} }\:+\frac{\mathrm{bc}}{\mathrm{1}−\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{ca}}{\mathrm{1}−\mathrm{b}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Question Number 150039    Answers: 1   Comments: 0

Prove that (a/b)+(b/c)+(c/a)≥(√((a^2 +1)/(b^2 +1)))+(√((b^2 +1)/(c^2 +1)))+(√((c^2 +1)/(a^2 +1))) for a,b,c are positive real number

$$\mathrm{Prove}\:\mathrm{that}\:\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}}\geqslant\sqrt{\frac{\mathrm{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{b}^{\mathrm{2}} +\mathrm{1}}}+\sqrt{\frac{\mathrm{b}^{\mathrm{2}} +\mathrm{1}}{\mathrm{c}^{\mathrm{2}} +\mathrm{1}}}+\sqrt{\frac{\mathrm{c}^{\mathrm{2}} +\mathrm{1}}{\mathrm{a}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{for}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\: \\ $$

Question Number 150037    Answers: 0   Comments: 0

Random Problem: ∫_(π/4) ^(π/2) (−7sin x + 3cos x) dx By getting the antiderivative of the trigonometric functions: ∫ sin(x) dx = −cos x + c ∫ cos(x) dx = sin x + c = −7 ∫ sin x + 3 ∫ cos x ∣_(π/4) ^(π/2) = −7(− cos x) + 3(sin x) ∣_(π/4) ^(π/2) = 7 cos x + 3sin x ∣_(π/4) ^(π/2) Evaluate it to the top and bottom limit of integration: = (7 cos ∙ (π/2) + 3 sin ∙ (π/2))− (7 cos ∙ (π/(4 )) + 3 sin ∙ (π/4) ) =[7(0) + 3(1)] − [7(((√2)/2)) + 3(((√2)/2))] = 3 − ((7(√2))/2) − ((3(√2))/2) = 3 − ((10(√2))/2) or 3 − 5(√2) Answer: 3 − 5(√2) Solution by Roswel:)

$${Random}\:{Problem}: \\ $$$$\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\left(−\mathrm{7sin}\:{x}\:+\:\mathrm{3cos}\:{x}\right)\:{dx} \\ $$$$ \\ $$$${By}\:{getting}\:{the}\:{antiderivative}\:{of}\:{the}\:{trigonometric}\:{functions}: \\ $$$$\int\:\mathrm{sin}\left({x}\right)\:{dx}\:=\:−\mathrm{cos}\:{x}\:+\:{c} \\ $$$$\int\:\mathrm{cos}\left({x}\right)\:{dx}\:=\:\mathrm{sin}\:{x}\:+\:{c} \\ $$$$=\:−\mathrm{7}\:\int\:\mathrm{sin}\:{x}\:\:+\:\:\mathrm{3}\:\int\:\mathrm{cos}\:{x}\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}}\:=\:−\mathrm{7}\left(−\:\mathrm{cos}\:{x}\right)\:+\:\mathrm{3}\left(\mathrm{sin}\:{x}\right)\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}} \\ $$$$=\:\mathrm{7}\:\mathrm{cos}\:{x}\:+\:\mathrm{3sin}\:{x}\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}} \\ $$$$ \\ $$$${Evaluate}\:{it}\:{to}\:{the}\:{top}\:{and}\:{bottom}\:{limit}\:{of}\:{integration}: \\ $$$$ \\ $$$$=\:\left(\mathrm{7}\:\mathrm{cos}\:\centerdot\:\frac{\pi}{\mathrm{2}}\:+\:\mathrm{3}\:\mathrm{sin}\:\centerdot\:\frac{\pi}{\mathrm{2}}\right)−\:\left(\mathrm{7}\:\mathrm{cos}\:\centerdot\:\frac{\pi}{\mathrm{4}\:}\:\:+\:\mathrm{3}\:\mathrm{sin}\:\centerdot\:\frac{\pi}{\mathrm{4}}\:\right) \\ $$$$=\left[\mathrm{7}\left(\mathrm{0}\right)\:+\:\mathrm{3}\left(\mathrm{1}\right)\right]\:−\:\left[\mathrm{7}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\:+\:\mathrm{3}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\right] \\ $$$$=\:\mathrm{3}\:−\:\frac{\mathrm{7}\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\:\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$=\:\mathrm{3}\:−\:\frac{\mathrm{10}\sqrt{\mathrm{2}}}{\mathrm{2}}\:{or}\:\mathrm{3}\:−\:\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$${Answer}:\:\mathrm{3}\:−\:\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\left.{Solution}\:{by}\:{Roswel}:\right) \\ $$

Question Number 150034    Answers: 1   Comments: 0

Find a closed form: a∈R and a≠0 Ω(a)=∫_( 0) ^( ∞) (x^4 /((1+x^2 )(1+a^4 x^4 ))) dx

$$\mathrm{Find}\:\boldsymbol{\mathrm{a}}\:\mathrm{closed}\:\mathrm{form}:\:\:\boldsymbol{\mathrm{a}}\in\mathbb{R}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{a}}\neq\mathrm{0} \\ $$$$\Omega\left(\mathrm{a}\right)=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{x}^{\mathrm{4}} }{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{a}^{\mathrm{4}} \mathrm{x}^{\mathrm{4}} \right)}\:\mathrm{dx} \\ $$

Question Number 150033    Answers: 1   Comments: 0

Question Number 150030    Answers: 0   Comments: 0

Roll a fair die twice and define A to be event that the sum of the scores showing up is greater than 7, B be the event that the sum of the scores showing up is a multiple of 3 and C be the event that the sum of the scores showing up is a prime number. Which of the events A,B and C are independent event? are the 3 events jointly independent?

$$\mathrm{Roll}\:\mathrm{a}\:\mathrm{fair}\:\mathrm{die}\:\mathrm{twice}\:\mathrm{and}\:\mathrm{define}\:\mathrm{A}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{event}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{scores}\:\mathrm{showing} \\ $$$$\mathrm{up}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{7},\:\mathrm{B}\:\mathrm{be}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{scores}\:\mathrm{showing}\:\mathrm{up}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}\:\mathrm{and}\:\mathrm{C}\:\mathrm{be}\:\mathrm{the}\:\mathrm{event}\:\mathrm{that} \\ $$$$\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{scores}\:\mathrm{showing}\:\mathrm{up}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{prime}\:\mathrm{number}.\:\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{events}\: \\ $$$$\mathrm{A},\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{independent}\:\mathrm{event}? \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{3}\:\mathrm{events}\:\mathrm{jointly}\:\mathrm{independent}? \\ $$$$ \\ $$

Question Number 150029    Answers: 1   Comments: 0

Calcular: (√(8 + 2(√(8 + 2(√(8 + ...)))))) = ?

$$\mathrm{Calcular}: \\ $$$$\sqrt{\mathrm{8}\:+\:\mathrm{2}\sqrt{\mathrm{8}\:+\:\mathrm{2}\sqrt{\mathrm{8}\:+\:...}}}\:=\:? \\ $$

Question Number 150017    Answers: 0   Comments: 2

Question Number 150009    Answers: 1   Comments: 0

Question Number 150007    Answers: 1   Comments: 0

∫ ((x^2 + x)/(x^6 + 1)) dx = ?

$$\int\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}}{\mathrm{x}^{\mathrm{6}} \:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$

Question Number 150006    Answers: 1   Comments: 0

If x + y = (1/2) which of the following cannot be xy.?

$$\mathrm{If}\:\:\mathrm{x}\:+\:\mathrm{y}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\mathrm{which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{cannot}\:\mathrm{be}\:\:\mathrm{xy}.? \\ $$

Question Number 149996    Answers: 3   Comments: 0

(1) ∫ (dx/(1+tanx)) (2)∫ ((√(tanx))/(sinx cosx))dx

$$\left(\mathrm{1}\right)\:\int\:\:\frac{{dx}}{\mathrm{1}+{tanx}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\int\:\:\frac{\sqrt{{tanx}}}{{sinx}\:{cosx}}{dx} \\ $$

Question Number 149989    Answers: 1   Comments: 0

By subs u^2 =4+x, evaluate ∫ ((√(4+x))/x) dx

$$\mathrm{By}\:\mathrm{subs}\:{u}^{\mathrm{2}} =\mathrm{4}+{x},\:\mathrm{evaluate}\:\int\:\frac{\sqrt{\mathrm{4}+{x}}}{{x}}\:{dx} \\ $$

Question Number 149986    Answers: 1   Comments: 0

Question Number 149981    Answers: 1   Comments: 0

a full deck of 52 cards contains 13 hearts. Pick 8 cards from the deck at random without replacement. what is the probability that you get no heart?

$$\mathrm{a}\:\mathrm{full}\:\mathrm{deck}\:\mathrm{of}\:\mathrm{52}\:\mathrm{cards}\:\mathrm{contains}\:\mathrm{13} \\ $$$$\:\mathrm{hearts}.\:\mathrm{Pick}\:\mathrm{8}\:\mathrm{cards}\:\mathrm{from}\:\mathrm{the}\:\mathrm{deck} \\ $$$$\mathrm{at}\:\mathrm{random}\:\mathrm{without}\:\mathrm{replacement}. \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{you}\:\mathrm{get} \\ $$$$\mathrm{no}\:\mathrm{heart}? \\ $$$$ \\ $$

Question Number 149979    Answers: 0   Comments: 2

$$\: \\ $$

Question Number 149962    Answers: 0   Comments: 0

⌊x⌋+⌊y⌋=43.8 and x+y−⌊x⌋=18.4 .Find 100(x+y).

$$\:\lfloor{x}\rfloor+\lfloor{y}\rfloor=\mathrm{43}.\mathrm{8}\:{and}\:{x}+{y}−\lfloor{x}\rfloor=\mathrm{18}.\mathrm{4} \\ $$$$.{Find}\:\mathrm{100}\left({x}+{y}\right). \\ $$

Question Number 149959    Answers: 1   Comments: 3

Question Number 149958    Answers: 4   Comments: 2

lim_(x→0) ((cos(√x)))^(1/x) = ?

$$\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt[{\boldsymbol{\mathrm{x}}}]{\mathrm{cos}\sqrt{\mathrm{x}}}\:=\:? \\ $$

Question Number 149932    Answers: 2   Comments: 0

Question Number 149946    Answers: 6   Comments: 0

Question Number 149944    Answers: 0   Comments: 1

∫_0 ^1 (t^((n−1)/2) /((1+t)^(n+1) ))dt

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{n}−\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+{t}\right)^{{n}+\mathrm{1}} }{dt} \\ $$

  Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676      Pg 677      Pg 678   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com