Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 674
Question Number 142556 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2}{yz}+\mathrm{2}−{z}^{\mathrm{2}} }\\{{z}=\mathrm{4022}−{x}−{y}}\end{cases} \\ $$$$\:{x},{y},{z}\in\mathbb{Z}^{+} \:.\:{then}\:{z}= \\ $$
Question Number 142553 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:{Evaluate}\::\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{log}\left({x}\right){log}\left(\frac{{x}}{\mathrm{1}−{x}}\right)}{\:\sqrt{\frac{{x}}{\mathrm{1}−{x}}}}\:{dx} \\ $$
Question Number 142548 Answers: 0 Comments: 1
Question Number 142546 Answers: 0 Comments: 1
$${i}\:{need}\:{help} \\ $$
Question Number 142545 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{nice}\:.....{integral} \\ $$$$\:\:\:\:\:\Omega:=\int_{−\infty} ^{\:\:+\infty} \frac{{dx}}{\left({x}^{\mathrm{2}} +\pi^{\mathrm{2}} \right){cosh}\left({x}\right)}\:=? \\ $$$$..... \\ $$
Question Number 142538 Answers: 1 Comments: 0
$$\mathrm{2}\boldsymbol{{x}}^{\mathrm{7}} +\boldsymbol{{x}}^{\mathrm{28}} =\mathrm{3}\boldsymbol{{x}}^{\mathrm{21}} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 142537 Answers: 0 Comments: 0
$$\mathrm{Given}: \\ $$$$\mathrm{z}_{\mathrm{1}} =\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{3}}} \left(\mathrm{z}+\mathrm{3}\right)−\mathrm{3}\:\mathrm{and}\:\mathrm{z}_{\mathrm{2}} =\mathrm{e}^{−\mathrm{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \left(\mathrm{z}−\mathrm{3}\right)+\mathrm{3}. \\ $$$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\frac{\mathrm{z}_{\mathrm{2}} −\mathrm{z}}{\mathrm{z}_{\mathrm{1}} −\mathrm{z}}=\mathrm{i}\sqrt{\mathrm{3}}\frac{\mathrm{z}−\mathrm{3}}{\mathrm{z}+\mathrm{3}} \\ $$
Question Number 142534 Answers: 0 Comments: 0
Question Number 142531 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:{if}\:\:\:\:\boldsymbol{\phi}\:\left({q}\right):=\:\int_{\mathrm{1}} ^{\:\infty} \frac{\mathrm{1}}{\:\sqrt{{x}}\:\left({q}+{x}\right)^{{x}} }{dx} \\ $$$$\:\:\:\:{then}\:::\:\:{lim}\:_{{q}\rightarrow\mathrm{1}} \boldsymbol{\phi}\left({q}\right):=? \\ $$$$\:\:\:\:\:\: \\ $$
Question Number 142528 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{\:\infty} \:\frac{{dx}}{{e}^{{x}} −\mathrm{2}^{{x}} } \\ $$
Question Number 142516 Answers: 0 Comments: 0
$$\int\frac{{dx}}{\left(−{lnx}\right)^{\frac{\mathrm{1}}{{x}}} }\:\: \\ $$
Question Number 142514 Answers: 5 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:.....\:{number}\:\:{theory}..... \\ $$$$\:\:\:\:\:\:\:{Solve}\:{in}\:\mathbb{Z}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{xy}}\:=\frac{\mathrm{1}}{\mathrm{4}}\:....? \\ $$$$\:\:\:\:\:......... \\ $$
Question Number 142518 Answers: 0 Comments: 0
Question Number 142510 Answers: 0 Comments: 1
Question Number 142505 Answers: 0 Comments: 0
Question Number 142504 Answers: 1 Comments: 0
Question Number 142503 Answers: 1 Comments: 0
Question Number 142502 Answers: 0 Comments: 0
$$\frac{{dy}}{{dx}}\: \\ $$$${y}=\:\mathrm{3}{a}^{{x}} −\mathrm{cot}\:\mathrm{2}{x} \\ $$
Question Number 142499 Answers: 2 Comments: 1
Question Number 142492 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}}{\mathrm{3}{n}^{\mathrm{2}} \:+\:\mathrm{2}}\:\mathrm{diverges}. \\ $$
Question Number 142489 Answers: 0 Comments: 3
$$\mathrm{In}\:\:\mathrm{a}\:\mathrm{certain}\:\mathrm{urn}\:\mathrm{there}\:\mathrm{are}\:\mathrm{3}\:\mathrm{blue}, \\ $$$$\mathrm{2red}\:\mathrm{and}\:\mathrm{5}\:\mathrm{yellow}\:\mathrm{marbles}. \\ $$$$\mathrm{Calculate}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{atmost} \\ $$$$\mathrm{2}\:\mathrm{marbles}\:\mathrm{will}\:\mathrm{be}\:\mathrm{red}\:\mathrm{if}\:\mathrm{3}\:\mathrm{marbles} \\ $$$$\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{without}\:\mathrm{replacement} \\ $$
Question Number 142488 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{{k}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Question Number 142477 Answers: 0 Comments: 0
Question Number 142475 Answers: 2 Comments: 0
Question Number 142469 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:......\:\:{Calculus}\:..... \\ $$$$\:\:\:\:{Evaluate}:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{log}\left(\frac{\mathrm{1}}{{x}}\right)}{\mathrm{1}−{x}}\right)^{\mathrm{3}} {dx}=?? \\ $$
Question Number 142467 Answers: 0 Comments: 2
Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675 Pg 676 Pg 677 Pg 678
Terms of Service
Privacy Policy
Contact: info@tinkutara.com