Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 674
Question Number 145954 Answers: 1 Comments: 0
$$\mathrm{1}+{i}+{i}^{\mathrm{2}} +{i}^{\mathrm{3}} +...+{i}^{\mathrm{99}} =? \\ $$
Question Number 145953 Answers: 1 Comments: 4
Question Number 145951 Answers: 1 Comments: 0
$$\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}=?? \\ $$
Question Number 145947 Answers: 1 Comments: 1
Question Number 145946 Answers: 1 Comments: 0
$${the}\:{type}\:{of}\:{singular}\:{point}\:{of}\:{f}\left({z}\right)=\frac{{cos}\left(\pi{z}\right)}{\left(\mathrm{1}−{z}^{\mathrm{3}} \right)}\:{is}\:? \\ $$$$ \\ $$$$ \\ $$
Question Number 145944 Answers: 1 Comments: 1
Question Number 145942 Answers: 1 Comments: 0
Question Number 145941 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\mathrm{3}{x}} {log}\left(\mathrm{1}+{x}^{\mathrm{3}} \right){dx} \\ $$
Question Number 145940 Answers: 0 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{x}} {log}\left(\mathrm{1}−{x}^{\mathrm{4}} \right){dx} \\ $$
Question Number 145939 Answers: 0 Comments: 0
$$\Psi\left({x}\right)={ch}\left({sinx}\right) \\ $$$${developp}\:\Psi\:{at}\:{fourier}\:{serie} \\ $$
Question Number 145938 Answers: 1 Comments: 0
$${g}\left({x}\right)={cos}\left({arctanx}\right) \\ $$$${if}\:{g}\left({x}\right)=\Sigma\:{a}_{{n}} {x}^{{n}} \:{determine}\:{the} \\ $$$${sequence}\:{a}_{{n}} \\ $$
Question Number 145936 Answers: 0 Comments: 0
$${g}\left({x}\right)={arctan}\left({cosx}\right) \\ $$$${developp}\:{f}\:{at}\:{fourier}\:{serie} \\ $$
Question Number 145934 Answers: 0 Comments: 0
Question Number 145918 Answers: 1 Comments: 0
Question Number 145911 Answers: 4 Comments: 1
Question Number 145889 Answers: 0 Comments: 2
Question Number 145888 Answers: 1 Comments: 0
Question Number 145886 Answers: 0 Comments: 0
$$\frac{\mathrm{x}\sqrt{\frac{\mathrm{129934}}{\mathrm{14348057}}}}{\pi^{\mathrm{2}} }\:=\:\mathrm{e}^{\pi} \:\mathrm{then}\: \\ $$$$\:\frac{\sqrt{\mathrm{x}−\mathrm{96}}}{\mathrm{4}}\:=?\: \\ $$
Question Number 145884 Answers: 0 Comments: 0
Question Number 146041 Answers: 3 Comments: 0
$${z}'\:=\:\mathrm{2}{iz}\:+\:\left(\mathrm{3}−\mathrm{3}{i}\right) \\ $$$${geometrical}\:{representation}\:{is}? \\ $$
Question Number 145879 Answers: 1 Comments: 0
Question Number 145869 Answers: 2 Comments: 0
$$\mathrm{Let}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{be}\:\mathrm{2}\:\mathrm{events}\:\mathrm{such}\:\mathrm{that}\:\mathrm{P}\left(\mathrm{A}\right)=\mathrm{0}.\mathrm{4},\:\mathrm{P}\left(\overset{−} {\mathrm{B}}/\mathrm{A}\right)=\mathrm{0}.\mathrm{7} \\ $$$$\:\mathrm{and}\:\mathrm{P}\left(\mathrm{B}/\overset{−} {\mathrm{A}}\right)=\mathrm{0}.\mathrm{6},\:\mathrm{then}\:\mathrm{find} \\ $$$$\left({i}\right)\mathrm{P}\left(\overset{−} {\mathrm{B}}/\overset{−} {\mathrm{A}}\right)\:\:\left({ii}\right)\mathrm{P}\left(\mathrm{A}\cap\mathrm{B}\right)\:\:\:\left({iii}\right)\:\mathrm{P}\left(\mathrm{B}\right)\:\:\left({iv}\right)\mathrm{P}\left(\mathrm{A}\cup\mathrm{B}\right) \\ $$
Question Number 145863 Answers: 1 Comments: 0
Question Number 145855 Answers: 0 Comments: 0
Question Number 145856 Answers: 1 Comments: 2
Question Number 145852 Answers: 1 Comments: 0
$${sin}\frac{\pi}{\mathrm{24}}\centerdot{cos}\frac{\pi}{\mathrm{24}}\centerdot{cos}\frac{\pi}{\mathrm{12}}=? \\ $$
Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675 Pg 676 Pg 677 Pg 678
Terms of Service
Privacy Policy
Contact: info@tinkutara.com