Let a_1 , a_2 , a_3 , ... be an arithmethic progression of
positive real numbers. Then
(1/( (√a_1 )+(√a_2 )))+(1/( (√a_2 )+(√a_3 )))+∙∙∙+(1/( (√a_(n−1) )+(√a_n )))=
(A) ((n+1)/( (√a_1 )+(√a_n ))) (B) ((n−1)/( (√a_1 )+(√a_n )))
(C) (n/( (√a_1 )+(√a_n ))) (D) (n/( (√a_n )−(√a_1 )))
|