Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 673
Question Number 144959 Answers: 2 Comments: 0
Question Number 144961 Answers: 1 Comments: 0
$${x}\in\mathbb{Z}^{+} \\ $$$$\mathrm{15}^{\mathrm{48}\boldsymbol{{a}}+\mathrm{1}} \:\equiv\:{x}\:\left({mod}\:\mathrm{17}\right)\:\:{find}\:\:{x}=?\: \\ $$
Question Number 144951 Answers: 0 Comments: 1
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:{a}+{b}+\mathrm{1}\:=\:\mathrm{3}{ab}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{{a}+\mathrm{1}}+\frac{{b}^{\mathrm{2}} }{{b}+\mathrm{1}}\:\geqslant\:\frac{{a}}{{a}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{2}} }{{b}+\mathrm{1}}+\frac{{b}^{\mathrm{2}} }{{a}+\mathrm{1}}\:\geqslant\:\frac{{a}}{{b}^{\mathrm{2}} +\mathrm{1}}+\frac{{b}}{{a}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 144947 Answers: 1 Comments: 0
$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{12}} {\prod}}\mathrm{2}\centerdot{sin}\left(\frac{\pi{k}}{\mathrm{24}}\right)\:=\:? \\ $$
Question Number 144946 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\:\mathrm{0}} ^{\:\:\frac{\pi}{\mathrm{2}}} \left(\frac{\:\mathrm{x}}{\mathrm{cot}\:\left(\:\mathrm{x}\:\right)}\:\right)^{\:\mathrm{3}} \mathrm{dx}=? \\ $$$$ \\ $$
Question Number 144939 Answers: 0 Comments: 0
$$ \\ $$$$\boldsymbol{\mathrm{resoudre}} \\ $$$$\boldsymbol{\mathrm{I}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{nx}}\right)\boldsymbol{\mathrm{tan}}^{\boldsymbol{\mathrm{n}}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$
Question Number 144936 Answers: 1 Comments: 0
Question Number 144930 Answers: 2 Comments: 0
$${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }={cosx} \\ $$
Question Number 144929 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\: \\ $$$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+...+\frac{\mathrm{1}}{\mathrm{n}}}{\mathrm{n}^{\mathrm{2}} }\right)^{\mathrm{n}} \:\: \\ $$
Question Number 144928 Answers: 1 Comments: 0
$$\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+{z}\right){n}!} \\ $$
Question Number 144926 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}} \left({e}^{{ix}} \right)^{{z}} {dx}=???\:\:\:\left({z}\in\mathbb{C}\right) \\ $$
Question Number 144925 Answers: 1 Comments: 0
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}\right)!!}{\mathrm{2}^{\mathrm{n}} \centerdot\left(\mathrm{n}+\mathrm{1}\right)\centerdot\left(\mathrm{2n}+\mathrm{1}\right)!!}=? \\ $$
Question Number 144924 Answers: 1 Comments: 0
$$\mathrm{S}\left(\mathrm{x}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}\right)!!}{\left(\mathrm{2n}+\mathrm{1}\right)!!}\mathrm{x}^{\mathrm{2n}} =?........\left(\mid\mathrm{x}\mid<\mathrm{1}\right) \\ $$
Question Number 144922 Answers: 1 Comments: 0
$${if}\:\:{z}^{\mathrm{2}} \:-\:\mathrm{16}\sqrt{{z}}\:=\:\mathrm{12} \\ $$$${find}\:\:{z}\:-\:\mathrm{2}\sqrt{{z}}\:=\:? \\ $$
Question Number 144917 Answers: 1 Comments: 0
$${if}\:\:{x};{y}>\mathrm{0}\:\:{then}: \\ $$$$\mathrm{10}\:\centerdot\:\sqrt{\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{\mathrm{2}}}\:+\:\frac{\mathrm{8}{xy}}{{x}+{y}}\:\geqslant\:\mathrm{7}{x}+\mathrm{7}{y} \\ $$
Question Number 144914 Answers: 2 Comments: 0
$$\:\mathrm{If}\:\frac{\mathrm{1}+\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}{\mathrm{1}−\mathrm{tan}\:\mathrm{4}\sqrt{\theta}}\:=\:\mathrm{tan}\:\theta\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{possible} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\left(\theta+\mathrm{11}\sqrt{\theta}\:\right). \\ $$
Question Number 144910 Answers: 0 Comments: 0
$$\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{1}−{i}}\right)=???? \\ $$
Question Number 144909 Answers: 1 Comments: 0
$$\Gamma\left({a}+{ib}\right)\:{doesn}'{t}\:{exist}\:?\:{give}\:{her}\:{value} \\ $$
Question Number 144903 Answers: 0 Comments: 0
Question Number 144900 Answers: 1 Comments: 0
$${etude}\:{complete}\:{de}\:{la}\:{courbe}\:{d}'{equation} \\ $$$${polaire}\:{r}=\frac{\mathrm{1}}{{sin}\left(\mathrm{2}\theta\right)}\:\:\:\:\left({symetrie}\:{et}\:{trace}\right) \\ $$$$ \\ $$
Question Number 144899 Answers: 0 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\Omega\::=\:\int\:\frac{\sqrt{\mathrm{1}−{sin}\left({x}\right)}}{{cos}\:\left({x}\right)}\:{e}\:^{−\frac{\mathrm{1}}{\mathrm{2}}\:{x}} =\:? \\ $$$$ \\ $$
Question Number 144897 Answers: 0 Comments: 0
$$\underset{\mathrm{0}} {\overset{\frac{\left[{x}\right]}{\mathrm{3}}} {\int}}\frac{\mathrm{8}^{{x}} }{\mathrm{2}^{\left[\mathrm{3}{x}\right]} }\:{dx}=\:???\:\mathrm{where}\:\left[.\right]\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}. \\ $$
Question Number 144896 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\: \\ $$$$\:\int{e}^{{x}} \left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}^{\mathrm{2}} }\right)^{\mathrm{2}} {dx}\: \\ $$
Question Number 144890 Answers: 1 Comments: 1
Question Number 144888 Answers: 2 Comments: 1
Question Number 144887 Answers: 1 Comments: 0
Pg 668 Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675 Pg 676 Pg 677
Terms of Service
Privacy Policy
Contact: info@tinkutara.com