Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 673

Question Number 146063    Answers: 1   Comments: 0

if g(x)=((x^( 2) −x)/(2x−1)) , D_g = [1 , ∞) , lim_(x→∞) ((g^( −1) (x))/(ax + b)) = b−a (a <0 ) then find the value of Max (b ) D_( g) = Domain

$$ \\ $$$$\:\:\:\:{if}\:\:{g}\left({x}\right)=\frac{{x}^{\:\mathrm{2}} −{x}}{\mathrm{2}{x}−\mathrm{1}}\:\:\:,\:{D}_{{g}} =\:\left[\mathrm{1}\:,\:\infty\right) \\ $$$$\:\:\:\:,\:{lim}_{{x}\rightarrow\infty} \frac{{g}^{\:−\mathrm{1}} \left({x}\right)}{{ax}\:+\:{b}}\:=\:{b}−{a}\:\:\left({a}\:<\mathrm{0}\:\right) \\ $$$$\:\:{then}\:{find}\:\:{the}\:{value}\:{of}\:{Max}\:\left({b}\:\right) \\ $$$$\:\: \\ $$$$\:\:{D}_{\:{g}} \:=\:{Domain}\: \\ $$

Question Number 146062    Answers: 0   Comments: 1

find values a , b , c such that: −1≤ ax^2 +bx +c ≤ 1 and ((6b^( 2) + 8 a^( 2) )/3) is Max...

$$ \\ $$$$\:\:\:\:{find}\:\:{values}\:\:{a}\:,\:{b}\:,\:{c}\:\:{such}\:{that}: \\ $$$$\:\:\:\:−\mathrm{1}\leqslant\:{ax}\:^{\mathrm{2}} +{bx}\:+{c}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:{and}\:\:\frac{\mathrm{6}{b}^{\:\mathrm{2}} +\:\mathrm{8}\:{a}^{\:\mathrm{2}} }{\mathrm{3}}\:{is}\:{Max}... \\ $$

Question Number 146061    Answers: 0   Comments: 0

Question Number 146057    Answers: 1   Comments: 0

Question Number 146054    Answers: 0   Comments: 0

I := ∫_0 ^( ∞) e^( −x) . J_(1/2) (x ) dx J_(v ) (x ) = x^( v) Σ_(n=0) ^( ∞) (((− 1 )^( n) x^( 2n) )/(2^( n + v) n ! Γ ( n + v +1 ))) ....

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\:\infty} {e}^{\:−{x}} \:.\:\mathrm{J}_{\frac{\mathrm{1}}{\mathrm{2}}} \:\left({x}\:\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{J}_{{v}\:} \:\left({x}\:\right)\:=\:{x}^{\:{v}} \:\underset{{n}=\mathrm{0}} {\overset{\:\infty} {\sum}}\frac{\left(−\:\mathrm{1}\:\right)^{\:{n}} \:{x}^{\:\mathrm{2}{n}} }{\mathrm{2}^{\:{n}\:+\:{v}} \:{n}\:!\:\Gamma\:\left(\:{n}\:+\:{v}\:+\mathrm{1}\:\right)} \\ $$$$\:\:\:.... \\ $$

Question Number 146048    Answers: 1   Comments: 0

in a triangle ABC we have { ((3sinA^ +4cosB^ =6)),((4sinB^ +3cosA^ =1)) :} find C^

$${in}\:{a}\:{triangle}\:{ABC}\:\:{we}\:{have}\: \\ $$$$\begin{cases}{\mathrm{3}{sin}\hat {{A}}+\mathrm{4}{cos}\hat {{B}}=\mathrm{6}}\\{\mathrm{4}{sin}\hat {{B}}+\mathrm{3}{cos}\hat {{A}}=\mathrm{1}}\end{cases} \\ $$$${find}\:\hat {{C}} \\ $$$$ \\ $$

Question Number 146046    Answers: 1   Comments: 0

f(x) = x^(sin(x)) ⇒ f^′ (x) = ?

$${f}\left({x}\right)\:=\:{x}^{\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)} \:\Rightarrow\:{f}\:^{'} \left({x}\right)\:=\:? \\ $$

Question Number 146043    Answers: 2   Comments: 0

Question Number 146044    Answers: 1   Comments: 0

Simplify: ((sin^3 α)/(1-cosα)) + ((cos^3 α)/(sinα+1)) = ?

$${Simplify}: \\ $$$$\frac{{sin}^{\mathrm{3}} \alpha}{\mathrm{1}-{cos}\alpha}\:+\:\frac{{cos}^{\mathrm{3}} \alpha}{{sin}\alpha+\mathrm{1}}\:=\:? \\ $$

Question Number 146035    Answers: 2   Comments: 0

help me please ∫((ln(x+1))/x)dx=??

$${help}\:{me}\:{please} \\ $$$$\int\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}=?? \\ $$$$ \\ $$

Question Number 146030    Answers: 0   Comments: 1

Question Number 146026    Answers: 2   Comments: 3

Question Number 146017    Answers: 1   Comments: 0

Question Number 146013    Answers: 0   Comments: 0

Question Number 146009    Answers: 1   Comments: 0

(1/4)+(1/(12))+(1/(24))+...+(1/(2n(n+1)))=?

$$\:\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{12}}+\frac{\mathrm{1}}{\mathrm{24}}+...+\frac{\mathrm{1}}{\mathrm{2n}\left(\mathrm{n}+\mathrm{1}\right)}=? \\ $$

Question Number 146004    Answers: 1   Comments: 0

F et G deux sous espaces vectoriels de E a) montrer que (F∩G=F+G)⇔(F=G) b) quand dit−on que les deux sous espaces vectoriels F et G sont supplementaires?

$$\mathrm{F}\:\mathrm{et}\:\mathrm{G}\:\mathrm{deux}\:\mathrm{sous}\:\mathrm{espaces}\:\mathrm{vectoriels}\:\mathrm{de}\:\mathrm{E} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{montrer}\:\mathrm{que}\:\left(\mathrm{F}\cap\mathrm{G}=\mathrm{F}+\mathrm{G}\right)\Leftrightarrow\left(\mathrm{F}=\mathrm{G}\right) \\ $$$$\left.\mathrm{b}\right)\:\mathrm{quand}\:\mathrm{dit}−\mathrm{on}\:\mathrm{que}\:\mathrm{les}\:\mathrm{deux}\:\mathrm{sous}\:\mathrm{espaces}\: \\ $$$$\mathrm{vectoriels}\:\mathrm{F}\:\mathrm{et}\:\mathrm{G}\:\mathrm{sont}\:\mathrm{supplementaires}? \\ $$

Question Number 145996    Answers: 3   Comments: 0

find the sum of x−2x^2 +3x^3 −4x^4 +5x^5 −6x^6 +... where ∣x∣ < 1

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\: \\ $$$$\:\mathrm{x}−\mathrm{2x}^{\mathrm{2}} +\mathrm{3x}^{\mathrm{3}} −\mathrm{4x}^{\mathrm{4}} +\mathrm{5x}^{\mathrm{5}} −\mathrm{6x}^{\mathrm{6}} +... \\ $$$$\mathrm{where}\:\mid\mathrm{x}\mid\:<\:\mathrm{1} \\ $$

Question Number 148416    Answers: 1   Comments: 0

lim_(x→∞) ((x! - cos(2x))/(3x + 1)) = ?

$$\underset{\boldsymbol{{x}}\rightarrow\infty} {{lim}}\frac{{x}!\:-\:{cos}\left(\mathrm{2}{x}\right)}{\mathrm{3}{x}\:+\:\mathrm{1}}\:=\:? \\ $$

Question Number 145986    Answers: 1   Comments: 0

What is x−f(x)×e/3.5π×θ=??????? function f(input) = decrypt( determinant ((( determinant (( )) )))

$${What}\:{is} \\ $$$${x}−{f}\left({x}\right)×{e}/\mathrm{3}.\mathrm{5}\pi×\theta=??????? \\ $$$${function}\:{f}\left({input}\right)\:=\:{decrypt}\left(\begin{array}{|c|}{\begin{array}{|c|}{\underbrace{ }}\\\hline\end{array}\underbrace{ }}\\\hline\end{array}\right. \\ $$

Question Number 145982    Answers: 1   Comments: 0

Σ_(n≥0) (−(1/(81)))^n Γ(3n+3)=??

$$\underset{{n}\geqslant\mathrm{0}} {\sum}\left(−\frac{\mathrm{1}}{\mathrm{81}}\right)^{{n}} \Gamma\left(\mathrm{3}{n}+\mathrm{3}\right)=?? \\ $$

Question Number 145981    Answers: 0   Comments: 0

let f(x) be a function period 2π such that:f(x)={x, 0<x<π {π, π<x<2π show that the fourier series for f(x) in the interval 0<x<2π is ((3π)/4)−(2/π)[cosx+(1/3^2 )cos3x+(1/5^2 )cos5x+...]−[sinx+(1/2)sin2x+(1/3)sin3x+...]

$${let}\:{f}\left({x}\right)\:{be}\:{a}\:{function}\:{period}\:\mathrm{2}\pi\:{such}\:{that}:{f}\left({x}\right)=\left\{{x},\:\mathrm{0}<{x}<\pi\right. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left\{\pi,\:\pi<{x}<\mathrm{2}\pi\right. \\ $$$${show}\:{that}\:{the}\:{fourier}\:{series}\:{for}\:{f}\left({x}\right)\:{in}\:{the}\:{interval}\:\mathrm{0}<{x}<\mathrm{2}\pi\:{is} \\ $$$$\frac{\mathrm{3}\pi}{\mathrm{4}}−\frac{\mathrm{2}}{\pi}\left[{cosx}+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }{cos}\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }{cos}\mathrm{5}{x}+...\right]−\left[{sinx}+\frac{\mathrm{1}}{\mathrm{2}}{sin}\mathrm{2}{x}+\frac{\mathrm{1}}{\mathrm{3}}{sin}\mathrm{3}{x}+...\right] \\ $$

Question Number 145979    Answers: 1   Comments: 0

sin^2 x−4cos^3 x−1=2cos^2 x+2cos x−2cos xsin^2 x x=?

$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}−\mathrm{4cos}\:^{\mathrm{3}} \mathrm{x}−\mathrm{1}=\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}+\mathrm{2cos}\:\mathrm{x}−\mathrm{2cos}\:\mathrm{xsin}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\mathrm{x}=? \\ $$

Question Number 145975    Answers: 1   Comments: 0

∫_( 0) ^( 6) [ (√(36−x^2 ))−(6−x)]dx=?

$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{6}} {\int}}\:\left[\:\sqrt{\mathrm{36}−{x}^{\mathrm{2}} }−\left(\mathrm{6}−{x}\right)\right]{dx}=? \\ $$

Question Number 146001    Answers: 1   Comments: 0

Soit p∈End(E). on pose q=id_E −p a) montrer que p est un projecteur si et seulement si q est un projecteur.. b) on suppose que p est un projecteur et on considere L={f∈End(E)/∃u∈End(E),f=u○p} et M={g∈End(E)/∃v∈End(E), g=v○q}. montrer que L et M sont des sous espaces vectoriels supplementaires de End(E)..

$$\mathrm{Soit}\:\mathrm{p}\in\mathrm{End}\left(\mathrm{E}\right).\:\mathrm{on}\:\mathrm{pose}\:\mathrm{q}=\mathrm{id}_{\mathrm{E}} −\mathrm{p} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{montrer}\:\mathrm{que}\:\mathrm{p}\:\mathrm{est}\:\mathrm{un}\:\mathrm{projecteur}\:\mathrm{si}\:\mathrm{et}\: \\ $$$$\mathrm{seulement}\:\mathrm{si}\:\mathrm{q}\:\mathrm{est}\:\mathrm{un}\:\mathrm{projecteur}.. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{on}\:\mathrm{suppose}\:\mathrm{que}\:\mathrm{p}\:\mathrm{est}\:\mathrm{un}\:\mathrm{projecteur}\:\mathrm{et}\:\mathrm{on} \\ $$$$\mathrm{considere}\:\mathrm{L}=\left\{\mathrm{f}\in\mathrm{End}\left(\mathrm{E}\right)/\exists\mathrm{u}\in\mathrm{End}\left(\mathrm{E}\right),\mathrm{f}=\mathrm{u}\circ\mathrm{p}\right\} \\ $$$$\mathrm{et}\:\mathrm{M}=\left\{\mathrm{g}\in\mathrm{End}\left(\mathrm{E}\right)/\exists\mathrm{v}\in\mathrm{End}\left(\mathrm{E}\right),\:\mathrm{g}=\mathrm{v}\circ\mathrm{q}\right\}. \\ $$$$\mathrm{montrer}\:\mathrm{que}\:\mathrm{L}\:\mathrm{et}\:\mathrm{M}\:\mathrm{sont}\:\mathrm{des}\:\mathrm{sous}\:\mathrm{espaces}\: \\ $$$$\mathrm{vectoriels}\:\mathrm{supplementaires}\:\mathrm{de}\:\mathrm{End}\left(\mathrm{E}\right).. \\ $$

Question Number 146000    Answers: 0   Comments: 3

Question Number 145960    Answers: 2   Comments: 0

  Pg 668      Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676      Pg 677   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com