Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 672

Question Number 148739    Answers: 1   Comments: 2

Question Number 148689    Answers: 2   Comments: 0

Solve for x∈R ((x^2 −x+1)/(x^2 +x+1)) = (√((x^3 −1)/(x^3 +1))) .

$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\in\mathrm{R} \\ $$$$\:\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:=\:\sqrt{\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\:. \\ $$

Question Number 148733    Answers: 0   Comments: 0

tg(α)+tg(β)=4 cos(α)+cos(β)=(1/5) tg(α+β)=?

$${tg}\left(\alpha\right)+{tg}\left(\beta\right)=\mathrm{4} \\ $$$${cos}\left(\alpha\right)+{cos}\left(\beta\right)=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${tg}\left(\alpha+\beta\right)=? \\ $$

Question Number 148732    Answers: 3   Comments: 0

show that 8^n −3^n is divisible by 5 for all natural number.

$$\:\:\:\:\:\:{show}\:{that}\: \\ $$$$\mathrm{8}^{{n}} \:−\mathrm{3}^{{n}} \:{is}\:{divisible}\:{by}\:\mathrm{5}\:\:{for}\:{all}\:{natural} \\ $$$${number}. \\ $$

Question Number 148677    Answers: 1   Comments: 0

A series of natural numbers are grouped as 1+(2+3)+(4+5+6)+... such that the rth group contains r terms. Show that the sum of the numbers in the (2r−1)th group is r^4 −(r−1)^4 .

$$\:\:\mathrm{A}\:\mathrm{series}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are}\: \\ $$$$\:\:\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}+\left(\mathrm{2}+\mathrm{3}\right)+\left(\mathrm{4}+\mathrm{5}+\mathrm{6}\right)+... \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:{rth}\:\mathrm{group}\:\mathrm{contains}\:{r}\: \\ $$$$\:\:\mathrm{terms}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\:\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:\left(\mathrm{2}{r}−\mathrm{1}\right){th}\:\mathrm{group}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{r}}^{\mathrm{4}} −\left(\boldsymbol{{r}}−\mathrm{1}\right)^{\mathrm{4}} . \\ $$

Question Number 148676    Answers: 1   Comments: 0

Find local minimum of function H(x)=((34)/(3+((2x)/(x^2 +3x+1)))) .

$$\mathrm{Find}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{function} \\ $$$$\:\mathrm{H}\left(\mathrm{x}\right)=\frac{\mathrm{34}}{\mathrm{3}+\frac{\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}}\:. \\ $$

Question Number 148674    Answers: 1   Comments: 0

Find max & min value of (1) f(x)=sin^3 x (√(1+cos^2 x)) +cos^3 x(√(1+sin^2 x)) . (2) f(x)=sin x (√(1+cos^2 x)) +cos x (√(1+sin^2 x)) . x ∈ R

$$\:\mathrm{Find}\:\mathrm{max}\:\&\:\mathrm{min}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\left(\mathrm{1}\right)\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:+\mathrm{cos}\:^{\mathrm{3}} \mathrm{x}\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:. \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}\:+\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}\:. \\ $$$$\:\mathrm{x}\:\in\:\mathbb{R}\: \\ $$

Question Number 148655    Answers: 3   Comments: 0

lim_(n→∞) ∫_( 0) ^( 1) ((nx)/(1 + n^2 x^4 )) dx = ?

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{{nx}}{\mathrm{1}\:+\:{n}^{\mathrm{2}} {x}^{\mathrm{4}} }\:{dx}\:=\:? \\ $$

Question Number 148645    Answers: 1   Comments: 0

u_(n+3) =((u_(n+2) +u_(n+1) +u_n )/3) , ∀n∈IN find u_n

$${u}_{{n}+\mathrm{3}} =\frac{{u}_{{n}+\mathrm{2}} +{u}_{{n}+\mathrm{1}} +{u}_{{n}} }{\mathrm{3}}\:,\:\forall{n}\in{IN} \\ $$$${find}\:{u}_{{n}} \: \\ $$

Question Number 148639    Answers: 1   Comments: 0

find singular point of this following and whats the type of singular point ? (1)f(z)=(1/(lnz)) (2)f(z)=((1−cos(z+i))/(z(z^2 +1)^2 )) (3)f(z)=((sinz)/(z^2 +z)) (4)f(z)=((sin2z)/z^2 )

$${find}\:{singular}\:{point}\:{of}\:{this}\:{following}\:{and} \\ $$$${whats}\:{the}\:{type}\:{of}\:{singular}\:{point}\:? \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{lnz}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cos}\left({z}+{i}\right)}{{z}\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\left(\mathrm{3}\right){f}\left({z}\right)=\frac{{sinz}}{{z}^{\mathrm{2}} +{z}} \\ $$$$ \\ $$$$\left(\mathrm{4}\right){f}\left({z}\right)=\frac{{sin}\mathrm{2}{z}}{{z}^{\mathrm{2}} } \\ $$

Question Number 148636    Answers: 1   Comments: 1

find tylor series of f(z)=logz about z_o =−1+i

$${find}\:{tylor}\:{series}\:{of}\:{f}\left({z}\right)={logz}\: \\ $$$${about}\:{z}_{{o}} =−\mathrm{1}+{i} \\ $$

Question Number 148635    Answers: 0   Comments: 0

show that {a_n }:=(1/(1!))−(1/(2!))+(1/(3!))−(1/(4!))...+(((−1)^(n+1) )/(n!)) is a cauchy sequence. my attempt: let ε>0 we have ∣a_m −a_n ∣=∣(((−1)^(n+2) )/((n+1)!))+(((−1)^(n+3) )/((n+2)!))+...+(((−1)^(m+1) )/(m!))∣ ≤∣(((−1)^(n+2) )/((n+1)!))∣+∣(((−1)^(n+3) )/((n+2)!))∣+...+∣(((−1)^(m+1) )/(m!))∣ =(1/((n+1)!))+(1/((n+2)!))+...+(1/(m!))<(1/(n!))≤(1/n)<ε. (1/n)→0 as n→∞, so no matter any ε>0 (1/n)<ε eventually. as long as n^∗ >(1/ε) ∣a_m −a_n ∣<ε ∀n≥n^∗ .

$$\mathrm{show}\:\mathrm{that}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}:=\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{4}!}...+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}!}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cauchy} \\ $$$$\mathrm{sequence}. \\ $$$$\mathrm{my}\:\mathrm{attempt}: \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{1}\right)!}+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{3}} }{\left(\mathrm{n}+\mathrm{2}\right)!}+...+\frac{\left(−\mathrm{1}\right)^{\mathrm{m}+\mathrm{1}} }{\mathrm{m}!}\mid \\ $$$$\leqslant\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{1}\right)!}\mid+\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{3}} }{\left(\mathrm{n}+\mathrm{2}\right)!}\mid+...+\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{m}+\mathrm{1}} }{\mathrm{m}!}\mid \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}+\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)!}+...+\frac{\mathrm{1}}{\mathrm{m}!}<\frac{\mathrm{1}}{\mathrm{n}!}\leqslant\frac{\mathrm{1}}{\mathrm{n}}<\epsilon. \\ $$$$\frac{\mathrm{1}}{\mathrm{n}}\rightarrow\mathrm{0}\:\mathrm{as}\:\mathrm{n}\rightarrow\infty,\:\mathrm{so}\:\mathrm{no}\:\mathrm{matter}\:\mathrm{any}\:\epsilon>\mathrm{0}\:\frac{\mathrm{1}}{\mathrm{n}}<\epsilon\:\mathrm{eventually}. \\ $$$$\mathrm{as}\:\mathrm{long}\:\mathrm{as}\:\mathrm{n}^{\ast} >\frac{\mathrm{1}}{\epsilon}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid<\epsilon\:\forall\mathrm{n}\geqslant\mathrm{n}^{\ast} .\: \\ $$

Question Number 148638    Answers: 0   Comments: 1

find laurent series f(z)=((cos(iz))/z^n ) ,∣z−i∣>2

$${find}\:{laurent}\:{series}\:{f}\left({z}\right)=\frac{{cos}\left({iz}\right)}{{z}^{{n}} }\:\:,\mid{z}−{i}\mid>\mathrm{2} \\ $$

Question Number 148633    Answers: 0   Comments: 0

Question Number 148630    Answers: 1   Comments: 0

Question Number 148631    Answers: 1   Comments: 1

find the region converge of the series and find the sum Σ_(n=1) ^∞ (n/(2^n (z−1)^n )) ?

$${find}\:{the}\:{region}\:{converge}\:{of}\:{the}\:{series}\:{and}\: \\ $$$${find}\:{the}\:{sum}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}}{\mathrm{2}^{{n}} \left({z}−\mathrm{1}\right)^{{n}} }\:? \\ $$

Question Number 148620    Answers: 1   Comments: 0

consider the following pdf of a random variable X f(x)={Σ_(i=0) ^∞ [(−x^2 )i/i!]_(0 otherwise) ^(x>0) find the variance X

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{following}\:\mathrm{pdf}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{random}\:\mathrm{variable}\:\mathrm{X} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left\{\sum_{\mathrm{i}=\mathrm{0}} ^{\infty} \left[\left(−\mathrm{x}^{\mathrm{2}} \right)\mathrm{i}/\mathrm{i}!\right]_{\mathrm{0}\:\mathrm{otherwise}} ^{\mathrm{x}>\mathrm{0}} \:\right. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{variance}\:\mathrm{X} \\ $$$$ \\ $$

Question Number 148609    Answers: 0   Comments: 2

prove that (a_n )_(n≥1 ) defined by a_n =(1/2)+(1/6)+...+(1/(n(n+1))) is cauchy sequence.

$$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{a}_{\mathrm{n}} \right)_{\mathrm{n}\geqslant\mathrm{1}\:} \mathrm{defined}\:\mathrm{by}\:\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+...+\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{is}\: \\ $$$$\mathrm{cauchy}\:\mathrm{sequence}. \\ $$

Question Number 148600    Answers: 1   Comments: 0

lim_(x→−∞) ((27x^3 −3x^2 ))^(1/3) +((8x^3 −x^2 ))^(1/3) −((x^3 −4x^2 +2021))^(1/3) =?

$$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{27}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}}]{\mathrm{8}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2021}}\:=?\: \\ $$

Question Number 148599    Answers: 3   Comments: 0

f : Z → Z f(x) = 2 ∙ f(x - 1) f(5) = 4 find f(30) = ?

$${f}\::\:\mathbb{Z}\:\rightarrow\:\mathbb{Z} \\ $$$${f}\left({x}\right)\:=\:\mathrm{2}\:\centerdot\:{f}\left({x}\:-\:\mathrm{1}\right) \\ $$$${f}\left(\mathrm{5}\right)\:=\:\mathrm{4} \\ $$$${find}\:\:\:{f}\left(\mathrm{30}\right)\:=\:? \\ $$

Question Number 148594    Answers: 2   Comments: 2

Solve for equation: x^2 +y^2 +z^2 = xy+xz+yz ⇒ x;y;z=?

$${Solve}\:{for}\:{equation}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:{xy}+{xz}+{yz}\:\:\:\Rightarrow\:\:{x};{y};{z}=? \\ $$

Question Number 148573    Answers: 2   Comments: 0

log_(√x) (x/y) = A ⇒ log_(√y) (y/x) = ?

$${log}_{\sqrt{\boldsymbol{{x}}}} \:\frac{{x}}{{y}}\:=\:{A}\:\:\Rightarrow\:\:{log}_{\sqrt{\boldsymbol{{y}}}} \:\frac{{y}}{{x}}\:=\:? \\ $$

Question Number 148654    Answers: 4   Comments: 0

lim_(x→1) (((1+x)/(2+x)))^((1−(√x))/(1−x)) = ?

$$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{\boldsymbol{{x}}}}{\mathrm{1}−\boldsymbol{{x}}}} \:=\:? \\ $$

Question Number 148653    Answers: 0   Comments: 0

Question Number 148570    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((logx)/(x^2 +x+1))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{logx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 148569    Answers: 2   Comments: 1

  Pg 667      Pg 668      Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com