Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 672

Question Number 142755    Answers: 1   Comments: 2

log_3 x^3 +log_2 x^2 =((2lg6)/(lg2))+1 find x

$$\mathrm{log}_{\mathrm{3}} \mathrm{x}^{\mathrm{3}} +\mathrm{log}_{\mathrm{2}} \mathrm{x}^{\mathrm{2}} =\frac{\mathrm{2lg6}}{\mathrm{lg2}}+\mathrm{1}\:\:\mathrm{find}\:\:\mathrm{x} \\ $$

Question Number 142748    Answers: 0   Comments: 0

please only number 4

$${please}\:{only}\:{number}\:\mathrm{4} \\ $$

Question Number 142745    Answers: 0   Comments: 7

Question Number 142814    Answers: 0   Comments: 4

Question Number 142815    Answers: 0   Comments: 1

find all roots of m^8 +7m^6 +2m^5 −12=0

$${find}\:{all}\:{roots}\:{of}\: \\ $$$$ \\ $$$${m}^{\mathrm{8}} +\mathrm{7}{m}^{\mathrm{6}} +\mathrm{2}{m}^{\mathrm{5}} −\mathrm{12}=\mathrm{0} \\ $$

Question Number 142740    Answers: 3   Comments: 3

(a/(b+c)) = (b/(a+c)) = (c/(a+b)) ; a∙b∙c = 12 (b+c)∙(a+c)∙(a+b) = ?

$$\frac{{a}}{{b}+{c}}\:=\:\frac{{b}}{{a}+{c}}\:=\:\frac{{c}}{{a}+{b}}\:\:;\:\:{a}\centerdot{b}\centerdot{c}\:=\:\mathrm{12} \\ $$$$\left({b}+{c}\right)\centerdot\left({a}+{c}\right)\centerdot\left({a}+{b}\right)\:=\:? \\ $$

Question Number 142730    Answers: 0   Comments: 1

x^x^(30) =(√)2^(1/2)

$${x}^{{x}^{\mathrm{30}} } =\sqrt{}\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$

Question Number 142729    Answers: 1   Comments: 0

prove:(d/dz)(tan^(−1) z)=(1/(1+z^2 )) in complex number help me sir

$${prove}:\frac{{d}}{{dz}}\left({tan}^{−\mathrm{1}} {z}\right)=\frac{\mathrm{1}}{\mathrm{1}+{z}^{\mathrm{2}} }\:{in}\:{complex}\:{number} \\ $$$${help}\:{me}\:{sir} \\ $$$$ \\ $$

Question Number 142725    Answers: 1   Comments: 7

Question Number 142724    Answers: 2   Comments: 0

∫_0 ^(π/2) ((sin(2t))/(1+xsin(2t)))dt=....

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left(\mathrm{2}{t}\right)}{\mathrm{1}+{xsin}\left(\mathrm{2}{t}\right)}{dt}=.... \\ $$

Question Number 142723    Answers: 1   Comments: 0

....... discrete ..... mathematics....... prove that: Σ_(n=1) ^∞ (1/(F_(2n+1) −1))=^? ((5−(√5))/2) F_n :: fibonacci sequence...

$$\:\:\:\:\:\:\:\:.......\:{discrete}\:\:.....\:\:{mathematics}....... \\ $$$$\:\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{F}_{\mathrm{2}{n}+\mathrm{1}} −\mathrm{1}}\overset{?} {=}\frac{\mathrm{5}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{F}_{{n}} \:::\:{fibonacci}\:\:{sequence}... \\ $$

Question Number 142721    Answers: 1   Comments: 0

lim_(x→0) (x/( (√(1−cos x))))=?

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}}{\:\sqrt{\mathrm{1}−\mathrm{cos}\:{x}}}=? \\ $$

Question Number 142719    Answers: 0   Comments: 1

find the particular solution to the differential equation y^((4)) +21y^((2)) −100y=4(8−29t)e^(−2t) . solution please.

$$\mathrm{find}\:\mathrm{the}\:\mathrm{particular}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{y}^{\left(\mathrm{4}\right)} +\mathrm{21y}^{\left(\mathrm{2}\right)} −\mathrm{100y}=\mathrm{4}\left(\mathrm{8}−\mathrm{29t}\right)\mathrm{e}^{−\mathrm{2t}} . \\ $$$$\mathrm{solution}\:\mathrm{please}. \\ $$

Question Number 142717    Answers: 2   Comments: 1

Question Number 142765    Answers: 1   Comments: 1

A class has 13 children. To play a game one child is the referee and the other children are divided in three teams with four children in each team. In how many ways can the class play the game?

$${A}\:{class}\:{has}\:\mathrm{13}\:{children}.\:{To}\:{play}\:{a} \\ $$$${game}\:{one}\:{child}\:{is}\:{the}\:{referee}\:{and}\:{the} \\ $$$${other}\:{children}\:{are}\:{divided}\:{in}\:{three}\: \\ $$$${teams}\:{with}\:{four}\:{children}\:{in}\:{each}\:{team}. \\ $$$${In}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{class}\:{play} \\ $$$${the}\:{game}? \\ $$

Question Number 142763    Answers: 2   Comments: 2

Question Number 142712    Answers: 0   Comments: 0

Question Number 142710    Answers: 1   Comments: 0

Let k be non-negative real numbers and n ∈ N^+ ≥1. Prove that (((4−k)/(4+k)))(((12−k)/(12+k)))...[((2n(n+1)−k)/(2n(n+1)+k))] ≤ ((n+k+1)/((n+1)(k+1)))

$$\mathrm{Let}\:{k}\:\mathrm{be}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{and}\:{n}\:\in\:\mathrm{N}^{+} \geqslant\mathrm{1}.\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\frac{\mathrm{4}−{k}}{\mathrm{4}+{k}}\right)\left(\frac{\mathrm{12}−{k}}{\mathrm{12}+{k}}\right)...\left[\frac{\mathrm{2}{n}\left({n}+\mathrm{1}\right)−{k}}{\mathrm{2}{n}\left({n}+\mathrm{1}\right)+{k}}\right]\:\leqslant\:\frac{{n}+{k}+\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)} \\ $$$$ \\ $$

Question Number 142708    Answers: 1   Comments: 0

I=∫_0 ^( α) (√(c^2 −sin^2 θ))dθ tan α=(a^2 /b^2 ) , a^2 >b^2 , c^2 >1 Perimeter of ellipse =4∫_0 ^( π/2) (√(a^2 −(a^2 −b^2 )sin^2 θ)) dθ (is that right sir?)

$$\:{I}=\int_{\mathrm{0}} ^{\:\:\alpha} \sqrt{{c}^{\mathrm{2}} −\mathrm{sin}\:^{\mathrm{2}} \theta}{d}\theta \\ $$$$\:\mathrm{tan}\:\alpha=\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:\:,\:{a}^{\mathrm{2}} >{b}^{\mathrm{2}} \:\:,\:{c}^{\mathrm{2}} >\mathrm{1} \\ $$$${Perimeter}\:{of}\:{ellipse} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \sqrt{{a}^{\mathrm{2}} −\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)\mathrm{sin}\:^{\mathrm{2}} \theta}\:{d}\theta \\ $$$$\left({is}\:{that}\:{right}\:{sir}?\right) \\ $$

Question Number 142698    Answers: 1   Comments: 0

Prove that ∀n∈N^∗ Π_(k=1) ^(n−1) sin(((kπ)/(2n))) = Π_(k=1) ^(n−1) cos(((kπ)/(2n)))

$$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{sin}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right)\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right) \\ $$

Question Number 142691    Answers: 1   Comments: 1

The number of distributions of 52 cards divided equally to 4 persons so as each gets 4 cards of same suit taken away from 3suits(4×3=12)℘ remaining card from remaining 4 th suit is

$${The}\:{number}\:{of}\:{distributions}\:{of}\:\mathrm{52} \\ $$$${cards}\:{divided}\:{equally}\:{to}\:\mathrm{4}\:{persons}\:{so} \\ $$$${as}\:{each}\:{gets}\:\mathrm{4}\:{cards}\:{of}\:{same}\:{suit} \\ $$$${taken}\:{away}\:{from}\:\mathrm{3}{suits}\left(\mathrm{4}×\mathrm{3}=\mathrm{12}\right)\wp \\ $$$${remaining}\:{card}\:{from}\:{remaining} \\ $$$$\mathrm{4}\:{th}\:{suit}\:{is} \\ $$

Question Number 142690    Answers: 1   Comments: 0

∫_(0 ) ^1 ((log(x)log((x/(1−x))))/( (√(x/(1−x)))))dx Any help

$$\int_{\mathrm{0}\:} ^{\mathrm{1}} \frac{\boldsymbol{{log}}\left(\boldsymbol{{x}}\right)\boldsymbol{{log}}\left(\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}\right)}{\:\sqrt{\frac{\boldsymbol{{x}}}{\mathrm{1}−\boldsymbol{{x}}}}}\boldsymbol{{dx}} \\ $$$$\boldsymbol{\mathrm{Any}}\:\boldsymbol{\mathrm{help}}\: \\ $$$$ \\ $$

Question Number 142689    Answers: 1   Comments: 0

Question Number 142687    Answers: 1   Comments: 0

∫ (dx/( (√(1−sin x)) (√(1+cos x)))) =?

$$\:\:\:\:\:\:\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}}\:\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}}\:=? \\ $$

Question Number 142681    Answers: 0   Comments: 2

prove that :: 𝛗:=∫_0 ^( ∞) ((ln(1+cos(x)))/(1+e^( x) ))dx=0 ................

$$ \\ $$$$\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left(\mathrm{1}+{cos}\left({x}\right)\right)}{\mathrm{1}+{e}^{\:{x}} }{dx}=\mathrm{0} \\ $$$$\:\:\:\:\:................ \\ $$$$ \\ $$

Question Number 142679    Answers: 0   Comments: 5

how to get exert value of a lambert w function question without wolfram alpha

$${how}\:{to}\:{get}\:{exert}\:{value}\:{of}\:{a}\:{lambert}\:{w}\:{function}\:{question}\:{without}\:{wolfram}\:{alpha} \\ $$

  Pg 667      Pg 668      Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674      Pg 675      Pg 676   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com