Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 671
Question Number 142880 Answers: 1 Comments: 0
$$\:{Prove}\:{that}\:\boldsymbol{\phi}\left({n}\right)={n}\underset{{k}} {\prod}\left(\mathrm{1}β\frac{\mathrm{1}}{{p}_{{k}} }\right)\:\:\phi\left({n}\right):{Euler}\:{totient}\:{function} \\ $$
Question Number 142875 Answers: 1 Comments: 0
$${Prove}\:{that}\:\zeta\left({s}\right)=\underset{{prime}} {\prod}\:\frac{\mathrm{1}}{\mathrm{1}β{p}^{β{s}} } \\ $$
Question Number 142871 Answers: 0 Comments: 0
$$\mathrm{determine}\:\mathrm{arctan}\left(\mathrm{x}+\mathrm{iy}\right)\:\mathrm{at}\:\mathrm{form}\:\mathrm{u}\left(\mathrm{x},\mathrm{y}\right)+\mathrm{iv}\left(\mathrm{x},\mathrm{y}\right) \\ $$
Question Number 142870 Answers: 1 Comments: 0
Question Number 142869 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{β\infty} ^{+\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} β\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$
Question Number 142863 Answers: 1 Comments: 0
Question Number 142854 Answers: 0 Comments: 1
$$\:\:{The}\:{maximum}\:{value}\:{of}\: \\ $$$$\:{y}=\sqrt{\left({x}β\mathrm{3}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} β\mathrm{2}\right)^{\mathrm{2}} }β\sqrt{{x}^{\mathrm{2}} +\left({x}β\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$\:{is}\: \\ $$
Question Number 142849 Answers: 1 Comments: 0
Question Number 142858 Answers: 1 Comments: 2
Question Number 142844 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{f}\left(\mathrm{sin}\:{x}\right)=\mathrm{cos}\:{x},\:\mathrm{evaluate} \\ $$$${f}\:'\left(\mathrm{sin}\:\mathrm{45}Β°\right). \\ $$
Question Number 142829 Answers: 3 Comments: 0
$$\:{Find}\:{the}\:{simplest}\:{form}\:{for}\: \\ $$$$\:\:{T}\:=\:\sqrt{\mathrm{1}+\sqrt{β\mathrm{3}}}\:+\sqrt{\mathrm{1}β\sqrt{β\mathrm{3}}}\: \\ $$
Question Number 142822 Answers: 1 Comments: 0
Question Number 142820 Answers: 0 Comments: 1
$${find}\:{k}\:{if}\::\:{C}_{{n}} ^{{k}} ={n}+\mathrm{1} \\ $$
Question Number 142805 Answers: 0 Comments: 0
Question Number 142802 Answers: 1 Comments: 1
$${x}=\mathrm{2}{w}\left({e}^{β\mathrm{1}} \right) \\ $$
Question Number 142794 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{2cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{4}}+\mathrm{3x}\right)\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}+\mathrm{3x}\right)=\mathrm{0}\:\mathrm{and}\: \\ $$$$\mathrm{sin}\:\left(\mathrm{2x}β\mathrm{2y}\right)=\mathrm{cos}\:\mathrm{y}\:\mathrm{where}\:\frac{\pi}{\mathrm{4}}\leqslant\mathrm{x}\leqslant\frac{\pi}{\mathrm{2}}\:\mathrm{and} \\ $$$$\frac{\pi}{\mathrm{4}}\leqslant\mathrm{y}\leqslant\frac{\pi}{\mathrm{2}}\:.\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\begin{cases}{\mathrm{sin}\:\left(\mathrm{2x}+\mathrm{y}\right)}\\{\mathrm{cos}\:\left(\mathrm{2x}+\mathrm{y}\right)}\\{\mathrm{cos}\:\left(\mathrm{2x}β\mathrm{y}\right)}\\{\mathrm{sin}\:\left(\mathrm{2x}β\mathrm{y}\right)}\end{cases} \\ $$
Question Number 142791 Answers: 1 Comments: 0
$$\:\:\:{Evaluate}::\:... \\ $$$$\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{li}_{\mathrm{2}} \left(\sqrt{{x}}\:\right)}{\mathrm{1}+\sqrt{{x}}}\:{dx}=?? \\ $$$$\:\:\:\:........... \\ $$
Question Number 142789 Answers: 2 Comments: 0
$$\int{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \:{dx}\:=\:?? \\ $$
Question Number 142788 Answers: 1 Comments: 0
Question Number 142777 Answers: 0 Comments: 2
Question Number 142773 Answers: 2 Comments: 0
$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:.......{nice}\:......{integral}...... \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}\:} ^{\:\mathrm{1}} \frac{{li}_{\mathrm{2}} \left(\mathrm{1}β{x}\right)}{\mathrm{2}β{x}}\:{dx}=?? \\ $$$$\:.......{m}.{n}... \\ $$
Question Number 142755 Answers: 1 Comments: 2
$$\mathrm{log}_{\mathrm{3}} \mathrm{x}^{\mathrm{3}} +\mathrm{log}_{\mathrm{2}} \mathrm{x}^{\mathrm{2}} =\frac{\mathrm{2lg6}}{\mathrm{lg2}}+\mathrm{1}\:\:\mathrm{find}\:\:\mathrm{x} \\ $$
Question Number 142748 Answers: 0 Comments: 0
$${please}\:{only}\:{number}\:\mathrm{4} \\ $$
Question Number 142745 Answers: 0 Comments: 7
Question Number 142814 Answers: 0 Comments: 4
Question Number 142815 Answers: 0 Comments: 1
$${find}\:{all}\:{roots}\:{of}\: \\ $$$$ \\ $$$${m}^{\mathrm{8}} +\mathrm{7}{m}^{\mathrm{6}} +\mathrm{2}{m}^{\mathrm{5}} β\mathrm{12}=\mathrm{0} \\ $$
Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675
Terms of Service
Privacy Policy
Contact: info@tinkutara.com