Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 670

Question Number 146353    Answers: 0   Comments: 0

Question Number 146532    Answers: 2   Comments: 0

2^x = 5 , 3^y = 9 and 25^z = 8 find (x∙y∙z)=?

$$\mathrm{2}^{\boldsymbol{{x}}} \:=\:\mathrm{5}\:\:,\:\:\mathrm{3}^{\boldsymbol{{y}}} \:=\:\mathrm{9}\:\:{and}\:\:\mathrm{25}^{\boldsymbol{{z}}} \:=\:\mathrm{8} \\ $$$${find}\:\:\:\left({x}\centerdot{y}\centerdot{z}\right)=? \\ $$

Question Number 146334    Answers: 5   Comments: 1

Question Number 146328    Answers: 1   Comments: 0

Question Number 146325    Answers: 1   Comments: 0

Given that (a+b)=(√(3(√3)−(√2))) and (a−b)=(√(3(√2)−(√3))) Find (i) ab (ii) a^2 +b^2

$${Given}\:{that}\:\left({a}+{b}\right)=\sqrt{\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}} \\ $$$${and}\:\left({a}−{b}\right)=\sqrt{\mathrm{3}\sqrt{\mathrm{2}}−\sqrt{\mathrm{3}}} \\ $$$${Find} \\ $$$$\left({i}\right)\:{ab}\:\:\:\:\:\:\left({ii}\right)\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$

Question Number 146315    Answers: 1   Comments: 0

Question Number 147334    Answers: 1   Comments: 1

If log_6 30 = a, log_(15) 24 = b, evaluate: log_(12) 60

$$\mathrm{If}\:\:\:\:\mathrm{log}_{\mathrm{6}} \mathrm{30}\:\:\:=\:\:\:\mathrm{a},\:\:\:\:\:\:\:\:\:\mathrm{log}_{\mathrm{15}} \mathrm{24}\:\:\:=\:\:\:\mathrm{b},\:\:\:\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:\mathrm{log}_{\mathrm{12}} \mathrm{60} \\ $$

Question Number 146311    Answers: 0   Comments: 3

lg^2 (10x) + lg(x) + 1 = 6 - lg(x) ⇒ x=?

$${lg}^{\mathrm{2}} \left(\mathrm{10}{x}\right)\:+\:{lg}\left({x}\right)\:+\:\mathrm{1}\:=\:\mathrm{6}\:-\:{lg}\left({x}\right) \\ $$$$\Rightarrow\:{x}=? \\ $$

Question Number 146310    Answers: 1   Comments: 3

4 sin(x) cos(x) ≥ (√3)

$$\mathrm{4}\:{sin}\left({x}\right)\:{cos}\left({x}\right)\:\geqslant\:\sqrt{\mathrm{3}} \\ $$

Question Number 146307    Answers: 1   Comments: 0

S_n =Σ_(k=1) ^n (( 1)/(k (k+2)k+4))) lim_( n→∞) ( S_( n) ) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{S}_{{n}} \:=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\:\mathrm{1}}{\left.{k}\:\left({k}+\mathrm{2}\right){k}+\mathrm{4}\right)} \\ $$$$\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\infty} \:\left(\:\:\mathrm{S}_{\:{n}} \:\right)\:=\:? \\ $$

Question Number 146303    Answers: 2   Comments: 4

Question Number 146300    Answers: 1   Comments: 0

Question Number 146290    Answers: 0   Comments: 5

Question Number 146285    Answers: 3   Comments: 2

∫ sin(2x - (π/4)) dx = ?

$$\int\:{sin}\left(\mathrm{2}{x}\:-\:\frac{\pi}{\mathrm{4}}\right)\:{dx}\:=\:? \\ $$

Question Number 146277    Answers: 1   Comments: 0

∫cos(2x)dx=?

$$\int{cos}\left(\mathrm{2}{x}\right){dx}=? \\ $$

Question Number 146272    Answers: 1   Comments: 3

log_x (x^2 + 1) ≤ 1

$${log}_{\boldsymbol{{x}}} \left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\leqslant\:\mathrm{1} \\ $$

Question Number 146318    Answers: 1   Comments: 4

if arg (((z−i)/i))=2 find Imz + Rez = ?

$${if}\:\:\:{arg}\:\left(\frac{{z}−{i}}{{i}}\right)=\mathrm{2} \\ $$$${find}\:\:\:{Imz}\:+\:{Rez}\:=\:? \\ $$

Question Number 146317    Answers: 0   Comments: 0

Question Number 146316    Answers: 2   Comments: 0

Question Number 146263    Answers: 2   Comments: 0

lim_(x→−∞) (−2x+1−(√(4x^2 −5x+8)))=?

$$\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\left(−\mathrm{2}{x}+\mathrm{1}−\sqrt{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{8}}\right)=? \\ $$

Question Number 146261    Answers: 1   Comments: 0

4 cos (50°) - (1/(sin (20°))) = ?

$$\mathrm{4}\:{cos}\:\left(\mathrm{50}°\right)\:-\:\frac{\mathrm{1}}{{sin}\:\left(\mathrm{20}°\right)}\:=\:? \\ $$

Question Number 146260    Answers: 1   Comments: 0

solve y^(′′) −2y^′ +y =e^(−x) sinx

$$\mathrm{solve}\:\mathrm{y}^{''} −\mathrm{2y}^{'} \:+\mathrm{y}\:=\mathrm{e}^{−\mathrm{x}} \mathrm{sinx} \\ $$

Question Number 146253    Answers: 2   Comments: 0

(4x^4 - 2x^2 + 17)_(max) = ?

$$\left(\mathrm{4}{x}^{\mathrm{4}} \:-\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{17}\right)_{\boldsymbol{{max}}} \:=\:? \\ $$

Question Number 146250    Answers: 0   Comments: 1

I_k =∫_0 ^(kΠ) e^x^2 sin x dx then find relation between I_1 ,I_2 ,I_3

$${I}_{{k}} =\underset{\mathrm{0}} {\overset{{k}\Pi} {\int}}{e}^{{x}^{\mathrm{2}} } \mathrm{sin}\:{x}\:{dx}\:{then}\:{find}\:{relation}\: \\ $$$${between}\:{I}_{\mathrm{1}} ,{I}_{\mathrm{2}} ,{I}_{\mathrm{3}} \\ $$

Question Number 146366    Answers: 1   Comments: 0

Question Number 146365    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(x^2 ))/(x^2 +4))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx} \\ $$

  Pg 665      Pg 666      Pg 667      Pg 668      Pg 669      Pg 670      Pg 671      Pg 672      Pg 673      Pg 674   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com