Question and Answers Forum |
AllQuestion and Answers: Page 670 |
Let f:[0,1]→R be a differentiable function such that f(f(x))=x for all x∈[0,1] and f(0)=1. If n is a positive integer, evaluate the following integral: ∫_0 ^( 1) (x−f(x))^(2n) dx |
![]() |
Let a,b ≥ 0 and (a+1)(b+1) = (a+b)^2 . Prove that (a+b)(√((a+1)^3 +(b+1)^3 )) ≤ (a+1)^2 +(b+1)^2 ≤ (1/2)[(a+1)^3 +(b+1)^3 ] |
![]() |
1+((3x)/(1!)) +((5x^2 )/(2!))+((7x^3 )/(3!))+((9x^4 )/(4!))+...+∞=? |
Re^ soudre (((8/(sin^2 (x))) + 1)/((1/(cos^2 (x))) + tan^2 (x))) = cotan^2 (x)+(4/3) |
yy′ = x e^(x/y) |
Given a polynomial p(x)=x^4 +4x^3 +(2p+2)x^2 +(2p+5q+2)x+3q+2r. If p(x)= (x^3 +2x^2 +8x+6)Q(x) then what the value of (p+2q)r . |
![]() |
Given the function f(x) =((6x^2 −x^3 ))^(1/3) Find the oblique assymptote(s) of the function. |
x=2−2+2−2+2−…+2−2+2=2 |
![]() |
if x^2 =x+2 find ((x^3 +1)/((x+1)^2 )) = ? |
2^(a!) + 2^(b!) + 2^(c!) = x Find natural numbers a;b;c such that the number “x” is a cube of any number. |
∫_(∣z∣=1) ((f^− (z))/(z−a))dz |
show that ∀x∈R x−1≤E(x)≤x |
# Calculus ( I ) # Σ_(n=1) ^∞ Arccot(3 +((n ( n + 1))/3) )= ? ..... |
∫ (((3(√x)+2)^5 )/( (√x))) dx = ? |
![]() |
x^x^x =((1/2))^(√2) find x |
![]() |
prove that a triangle inscribed in a circle of radius r having maximum area is an equilateral triangle with side (√3)r. |
Let a,b,c ≥ 0 and a^2 +b^2 +c^2 = 3. Prove that (1) Σ_(cyc) a^3 +Σ_(cyc) (a+b)^3 ≤ 27 (2) a^3 +b^3 +(b+c)^3 +(c+a)^3 ≥ (1/2)[c^3 +(a+b)^3 ] (3) For a≥b≥c≥0, a^3 +b^3 +(b+c)^3 +(c+a)^3 ≤ 2[c^3 +(a+b)^3 ] |
![]() |
1<a≤b then find ∫_( a) ^( b) tan^(-1) (((3x)/(1-2x^2 )))dx=? |
Riddle (clue) 1. I have different types 2. I may be considered natural, whole, positive or negative 3. I am the basic building block of mathematics 4. I am often considered reasonable or rational as well as crazy or irrational 5. I may be terminating or repeating 6. You can locate me on a line bearing my name. who am i? |
Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 |