Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 67

Question Number 206795    Answers: 0   Comments: 3

Question Number 206794    Answers: 1   Comments: 0

help me... ∫_0 ^∞ ((sin(t)ln(t))/t)e^(−t) dt

$${help}\:{me}... \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sin}\left({t}\right)\mathrm{ln}\left({t}\right)}{{t}}{e}^{−{t}} \:{dt} \\ $$

Question Number 206787    Answers: 0   Comments: 1

Question Number 206789    Answers: 1   Comments: 0

Question Number 206788    Answers: 1   Comments: 0

Question Number 206783    Answers: 1   Comments: 1

Question Number 206781    Answers: 0   Comments: 0

Question Number 206779    Answers: 2   Comments: 0

Question Number 206773    Answers: 0   Comments: 3

∫_0 ^∞ (e^(−x^2 ) /((x^2 +(1/2))^2 ))dx= I^2 =∫∫_( D) (e^(−x^2 −y^2 ) /((x^2 +(1/2))^2 (y^2 +(1/2))^2 ))dA x=rcos(θ) y=rsin(θ) J=∣((∂(x,y))/(∂(r,θ)))∣drdθ=rdrdθ ∫∫_( D) ((re^(−r^2 ) )/((r^2 cos^2 (θ)+(1/2))^2 (r^2 sin^2 (θ)+(1/2))^2 ))drdθ

$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$${I}^{\mathrm{2}} =\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dA} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right)\:\:{y}={r}\mathrm{sin}\left(\theta\right) \\ $$$${J}=\mid\frac{\partial\left({x},{y}\right)}{\partial\left({r},\theta\right)}\mid{drd}\theta={rdrd}\theta \\ $$$$\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{re}^{−{r}^{\mathrm{2}} } }{\left({r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{drd}\theta \\ $$

Question Number 206764    Answers: 3   Comments: 0

Question Number 206754    Answers: 1   Comments: 0

find ∫_0 ^1 (√(1−(√x)))ln^2 (x)dx

$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\sqrt{{x}}}{ln}^{\mathrm{2}} \left({x}\right){dx} \\ $$

Question Number 206750    Answers: 1   Comments: 0

Question Number 206746    Answers: 2   Comments: 0

Question Number 206737    Answers: 2   Comments: 4

Question Number 206730    Answers: 1   Comments: 1

find lim_(n→+∞) ∫_0 ^n e^(nx) arctan((x/n))dx

$${find}\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{n}} {e}^{{nx}} \:{arctan}\left(\frac{{x}}{{n}}\right){dx} \\ $$

Question Number 206729    Answers: 1   Comments: 0

Question Number 206727    Answers: 0   Comments: 0

Question Number 206721    Answers: 4   Comments: 0

∫((xdx)/(x+4))=? please

$$\int\frac{{xdx}}{{x}+\mathrm{4}}=?\:\:\:\:\:\:\:{please} \\ $$

Question Number 206709    Answers: 3   Comments: 4

Find the missing number determinant ((( 72),(24),( 6)),(( 96),(16),(12)),((108),( ?),(18))) A.12 B.16 C.18 D.20 Please help...

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{missing}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|c|}{\:\mathrm{72}}&\hline{\mathrm{24}}&\hline{\:\:\mathrm{6}}\\{\:\mathrm{96}}&\hline{\mathrm{16}}&\hline{\mathrm{12}}\\{\mathrm{108}}&\hline{\:?}&\hline{\mathrm{18}}\\\hline\end{array} \\ $$$$\mathrm{A}.\mathrm{12}\:\:\:\:\:\:\mathrm{B}.\mathrm{16}\:\:\:\:\mathrm{C}.\mathrm{18}\:\:\:\:\:\:\mathrm{D}.\mathrm{20} \\ $$$$\mathrm{Please}\:\mathrm{help}... \\ $$

Question Number 206704    Answers: 2   Comments: 1

Question Number 206702    Answers: 2   Comments: 0

lim_(n→∞) (√(cosn+sinn−3^n +4^n ))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{cos}{n}+\mathrm{sin}{n}−\mathrm{3}^{{n}} +\mathrm{4}^{{n}} } \\ $$

Question Number 206695    Answers: 1   Comments: 0

If (2)^(1/(10)) (cos 9° + i sin 9°) Find: z^5 = ?

$$\mathrm{If}\:\:\:\sqrt[{\mathrm{10}}]{\mathrm{2}}\:\left(\mathrm{cos}\:\mathrm{9}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin}\:\mathrm{9}°\right) \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{z}}^{\mathrm{5}} \:=\:? \\ $$

Question Number 206681    Answers: 3   Comments: 6

s

$$\:\:\:\cancel{{s}} \\ $$$$ \\ $$

Question Number 206679    Answers: 1   Comments: 0

if f(x)+2g(1−x)=x^2 and f(1−x)−g(x)=x^2 then f(x)=?

$${if}\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)+\mathrm{2}{g}\left(\mathrm{1}−{x}\right)={x}^{\mathrm{2}} \\ $$$${and}\:\:\:\:\:\:\:\:{f}\left(\mathrm{1}−{x}\right)−{g}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${then}\:\:\:\:\:\:\:{f}\left({x}\right)=? \\ $$

Question Number 206677    Answers: 2   Comments: 0

Question Number 206675    Answers: 1   Comments: 0

There are three positive integers a, b, and c such that their average is 35 and a ≤ b ≤ c. If the median is (a + 18), then find the minimum possible value of c. (1) 41. (2) 42. (3) 39. (4) 40

$$ \\ $$There are three positive integers a, b, and c such that their average is 35 and a ≤ b ≤ c. If the median is (a + 18), then find the minimum possible value of c. (1) 41. (2) 42. (3) 39. (4) 40

  Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com