Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 67
Question Number 206795 Answers: 0 Comments: 3
Question Number 206794 Answers: 1 Comments: 0
$${help}\:{me}... \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{sin}\left({t}\right)\mathrm{ln}\left({t}\right)}{{t}}{e}^{−{t}} \:{dt} \\ $$
Question Number 206787 Answers: 0 Comments: 1
Question Number 206789 Answers: 1 Comments: 0
Question Number 206788 Answers: 1 Comments: 0
Question Number 206783 Answers: 1 Comments: 1
Question Number 206781 Answers: 0 Comments: 0
Question Number 206779 Answers: 2 Comments: 0
Question Number 206773 Answers: 0 Comments: 3
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{x}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dx}= \\ $$$${I}^{\mathrm{2}} =\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{e}^{−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{dA} \\ $$$${x}={r}\mathrm{cos}\left(\theta\right)\:\:{y}={r}\mathrm{sin}\left(\theta\right) \\ $$$${J}=\mid\frac{\partial\left({x},{y}\right)}{\partial\left({r},\theta\right)}\mid{drd}\theta={rdrd}\theta \\ $$$$\int\int_{\:\boldsymbol{\mathcal{D}}} \:\frac{{re}^{−{r}^{\mathrm{2}} } }{\left({r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \left({r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }{drd}\theta \\ $$
Question Number 206764 Answers: 3 Comments: 0
Question Number 206754 Answers: 1 Comments: 0
$${find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−\sqrt{{x}}}{ln}^{\mathrm{2}} \left({x}\right){dx} \\ $$
Question Number 206750 Answers: 1 Comments: 0
Question Number 206746 Answers: 2 Comments: 0
Question Number 206737 Answers: 2 Comments: 4
Question Number 206730 Answers: 1 Comments: 1
$${find}\:{lim}_{{n}\rightarrow+\infty} \int_{\mathrm{0}} ^{{n}} {e}^{{nx}} \:{arctan}\left(\frac{{x}}{{n}}\right){dx} \\ $$
Question Number 206729 Answers: 1 Comments: 0
Question Number 206727 Answers: 0 Comments: 0
Question Number 206721 Answers: 4 Comments: 0
$$\int\frac{{xdx}}{{x}+\mathrm{4}}=?\:\:\:\:\:\:\:{please} \\ $$
Question Number 206709 Answers: 3 Comments: 4
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{missing}\:\mathrm{number} \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|c|}{\:\mathrm{72}}&\hline{\mathrm{24}}&\hline{\:\:\mathrm{6}}\\{\:\mathrm{96}}&\hline{\mathrm{16}}&\hline{\mathrm{12}}\\{\mathrm{108}}&\hline{\:?}&\hline{\mathrm{18}}\\\hline\end{array} \\ $$$$\mathrm{A}.\mathrm{12}\:\:\:\:\:\:\mathrm{B}.\mathrm{16}\:\:\:\:\mathrm{C}.\mathrm{18}\:\:\:\:\:\:\mathrm{D}.\mathrm{20} \\ $$$$\mathrm{Please}\:\mathrm{help}... \\ $$
Question Number 206704 Answers: 2 Comments: 1
Question Number 206702 Answers: 2 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt{\mathrm{cos}{n}+\mathrm{sin}{n}−\mathrm{3}^{{n}} +\mathrm{4}^{{n}} } \\ $$
Question Number 206695 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\sqrt[{\mathrm{10}}]{\mathrm{2}}\:\left(\mathrm{cos}\:\mathrm{9}°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin}\:\mathrm{9}°\right) \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{z}}^{\mathrm{5}} \:=\:? \\ $$
Question Number 206681 Answers: 3 Comments: 6
$$\:\:\:\cancel{{s}} \\ $$$$ \\ $$
Question Number 206679 Answers: 1 Comments: 0
$${if}\:\:\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)+\mathrm{2}{g}\left(\mathrm{1}−{x}\right)={x}^{\mathrm{2}} \\ $$$${and}\:\:\:\:\:\:\:\:{f}\left(\mathrm{1}−{x}\right)−{g}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${then}\:\:\:\:\:\:\:{f}\left({x}\right)=? \\ $$
Question Number 206677 Answers: 2 Comments: 0
Question Number 206675 Answers: 1 Comments: 0
$$ \\ $$There are three positive integers a, b, and c such that their average is 35 and a ≤ b ≤ c. If the median is (a + 18), then find the minimum possible value of c. (1) 41. (2) 42. (3) 39. (4) 40
Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71
Terms of Service
Privacy Policy
Contact: info@tinkutara.com