Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 668
Question Number 151758 Answers: 2 Comments: 1
$$\mathrm{f}\left(\mathrm{3x}+\mathrm{1}\right)=\mathrm{g}^{−\mathrm{1}} \left(\mathrm{5x}^{\mathrm{2}} −\mathrm{2}\right) \\ $$$$\left({g}\:{o}\:{f}\right)^{'} \:\left(\mathrm{4}\right)\:=\:? \\ $$
Question Number 151756 Answers: 0 Comments: 1
Question Number 151768 Answers: 1 Comments: 0
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{1}\:+\:\mathrm{a}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \right)}{\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 151767 Answers: 3 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{n}}{\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{k}}\:=\:? \\ $$
Question Number 151766 Answers: 0 Comments: 1
Question Number 151754 Answers: 0 Comments: 0
Question Number 151753 Answers: 0 Comments: 1
Question Number 151747 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\lambda-\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\:\lambda\geqslant\frac{-\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{solve}\:\mathrm{in}\:\mathbb{R}\:\:\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:\leqslant\:\mathrm{0} \\ $$
Question Number 151744 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:{show}\:\:{that}.... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathscr{F}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{4}} \:\left({x}^{\:\mathrm{2}} \:\right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\:\left(\:\mathrm{4}\:−\:\sqrt{\mathrm{2}}\:\right)\sqrt{\pi}\:.....\blacksquare\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:...{m}.{n}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 151742 Answers: 1 Comments: 0
$$\:\: \\ $$$$\:\:\:\mathrm{F}\:\left({x}\:\right):=\:\frac{{log}\:\left({sin}\left({x}\right)\:+{cos}\:\left({x}\right)\right)}{{log}\:\left({sin}\left(\mathrm{2}{x}\right)\right)} \\ $$$$\:\:{find}\:\:\:{the}\:{Domain}\:{of}\:\:\:\:\mathrm{F}\:... \\ $$$$\:\:\:\mathrm{D}_{\:\mathrm{F}} \:=? \\ $$
Question Number 151739 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\left({x}\right)}{\:\sqrt{{x}^{{x}} +\mathrm{1}}}\:{dx} \\ $$$$\: \\ $$
Question Number 151738 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}\:{d}\left({e}^{{x}^{\mathrm{2}} } \right) \\ $$$$ \\ $$$${how}\:{it}\:{solve}\: \\ $$
Question Number 151791 Answers: 1 Comments: 0
Question Number 151790 Answers: 1 Comments: 0
Question Number 151724 Answers: 0 Comments: 10
Question Number 151699 Answers: 2 Comments: 0
$$\:\:\:\:\underset{{x}^{\mathrm{3}} +\mathrm{2022}{x}−\mathrm{2021}=\mathrm{0}} {\sum}\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)\:=? \\ $$
Question Number 151761 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{e}^{{x}} +\mathrm{1}}}\:{dx}\: \\ $$$$\: \\ $$
Question Number 151685 Answers: 1 Comments: 0
$$\:\:{Find}\:{maximum}\:{value}\:{of}\:{function} \\ $$$$\:\:\alpha\left({x}\right)=\:\sqrt{\mathrm{2}{x}}\:+\sqrt{\mathrm{16}−{x}}\:+\sqrt{\mathrm{35}+{x}}\:. \\ $$
Question Number 151677 Answers: 1 Comments: 0
Question Number 151673 Answers: 1 Comments: 0
Question Number 151665 Answers: 2 Comments: 0
$$\mathrm{prove}\:\mathrm{4arccot5}−\mathrm{arccot239}=\frac{\pi}{\mathrm{4}} \\ $$
Question Number 151721 Answers: 0 Comments: 1
Question Number 151660 Answers: 1 Comments: 0
Question Number 151652 Answers: 1 Comments: 0
$${faire}\:{la}\:{division}\:{de}\:\left(\mathrm{1}−{x}^{{n}} \right)\:{par}\:\left(\mathrm{1}−{x}\right) \\ $$
Question Number 151641 Answers: 1 Comments: 0
Question Number 151638 Answers: 1 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{2}\boldsymbol{\pi}} {\int}}\left(\mathrm{1}\:-\:\mathrm{cos}\boldsymbol{\mathrm{x}}\right)^{\mathrm{10}} \:\mathrm{cos}\left(\mathrm{10x}\right)\:\mathrm{dx}\:=\:? \\ $$
Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672
Terms of Service
Privacy Policy
Contact: info@tinkutara.com