Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 668
Question Number 143122 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b}\:\in\left[\mathrm{0},\mathrm{1}\right]\:\mathrm{and}\:{a}+{b}\:\leqslant\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{a}}+\frac{\mathrm{1}}{\mathrm{1}+{b}}+\frac{\mathrm{1}}{\mathrm{2}}\:\leqslant\:\frac{\mathrm{2}}{{a}+{b}}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 143114 Answers: 1 Comments: 0
$${solve}: \\ $$$$\underset{{z}\rightarrow{i}} {\mathrm{lim}}\frac{\mathrm{3}{z}^{\mathrm{4}} −\mathrm{2}{z}^{\mathrm{3}} +\mathrm{8}{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}}{{z}−{i}}=? \\ $$
Question Number 143113 Answers: 0 Comments: 1
$$\mathrm{x}^{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{3}!}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{f}\left(\mathrm{x}−\mathrm{t}\right)\mathrm{f}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=? \\ $$
Question Number 143109 Answers: 3 Comments: 1
Question Number 143105 Answers: 0 Comments: 1
$$\frac{{cos}\left(\mathrm{3}{x}\right)}{{sin}\left(\mathrm{2}{x}\right)}\:=\:\mathrm{0} \\ $$
Question Number 143102 Answers: 1 Comments: 0
Question Number 143101 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{x}:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{x}+\mathrm{1}} =\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{x}} \\ $$
Question Number 143100 Answers: 5 Comments: 0
$$\int\sqrt{{e}^{{x}} +\mathrm{1}\:}=.....??? \\ $$
Question Number 143098 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{Prove}....\: \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{s}{inh}\left(\pi{n}\right)}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\:−\frac{\mathrm{1}}{\mathrm{2}\pi}\:\:\:... \\ $$$$\:\:\:\:\:\:\:...... \\ $$
Question Number 143097 Answers: 1 Comments: 0
$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\mathrm{sin}\:\theta,\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\frac{\mathrm{1}−{z}^{\mathrm{2}} }{\mathrm{1}+{z}^{\mathrm{2}} }=−{i}\mathrm{tan}\:\theta \\ $$
Question Number 143094 Answers: 1 Comments: 0
Question Number 143090 Answers: 0 Comments: 0
Question Number 143087 Answers: 2 Comments: 0
Question Number 143086 Answers: 2 Comments: 0
$$ \\ $$$$\:\:{Evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{ln}\left({tan}\left({x}\right)\right).{sin}^{\pi^{{e}} } \left(\mathrm{2}{x}\right)}{\left({sin}^{\pi^{{e}} } \left({x}\right)+{cos}^{\pi^{{e}} } \left({x}\right)\right)^{\mathrm{2}} }{dx} \\ $$$$ \\ $$
Question Number 143085 Answers: 0 Comments: 0
$$\phi\left({n}^{\mathrm{4}} +\mathrm{1}\right)=\mathrm{8}{n}\:\:\:\:\:\:\phi:{Euler}\:{totient}\:{function} \\ $$$${Solve}\:{for}\:{n}\in\mathbb{N} \\ $$
Question Number 143083 Answers: 1 Comments: 0
$${calculate}\:\Psi\left({a},{b}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}^{\mathrm{2}} } }{\left({x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$
Question Number 143082 Answers: 2 Comments: 0
$${calculate}\:{f}\left({a},{b}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−{ax}^{\mathrm{2}} } }{{x}^{\mathrm{2}} \:+{b}^{\mathrm{2}} }{dx} \\ $$$${with}\:{a}>\mathrm{0}\:{and}\:{b}>\mathrm{0} \\ $$
Question Number 143081 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}^{\mathrm{2}} } {arctanx}\:{dx} \\ $$
Question Number 143080 Answers: 2 Comments: 0
$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{arctan}\left({x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$
Question Number 143077 Answers: 1 Comments: 0
$${sin}^{\mathrm{5}} {x}\:+\:{cos}^{\mathrm{5}} {x}\:=\:\mathrm{2}\:−\:{sin}^{\mathrm{4}} {x} \\ $$
Question Number 143072 Answers: 1 Comments: 0
Question Number 143071 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{8}{dx}}{{tgx}+\mathrm{1}} \\ $$
Question Number 143064 Answers: 4 Comments: 0
$$\:\:\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:−\sqrt[{\mathrm{4}}]{\mathrm{1}−\mathrm{2x}}}{\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\:=? \\ $$$$\:\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{7}+\mathrm{x}^{\mathrm{2}} }−\sqrt{\mathrm{3}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}−\mathrm{1}}\:=? \\ $$
Question Number 143063 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right)\boldsymbol{\mathrm{cos}}\left(\frac{\mathrm{2}\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right)\boldsymbol{\mathrm{cos}}\left(\frac{\mathrm{3}\boldsymbol{\pi}}{\mathrm{2n}+\mathrm{1}}\right).....\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\mathrm{n}\pi}}{\mathrm{2}\boldsymbol{\mathrm{n}}+\mathrm{1}}\right)=\frac{\mathrm{1}}{\mathrm{2}^{\boldsymbol{\mathrm{n}}} } \\ $$$$\boldsymbol{\mathrm{prove}} \\ $$
Question Number 143057 Answers: 1 Comments: 0
$$\mathrm{cos}\left(\boldsymbol{\alpha}\right)×\mathrm{cos}\left(\mathrm{2}\alpha\right)×\mathrm{cos}\left(\mathrm{4}\alpha\right)×....×\mathrm{cos}\left(\mathrm{2}^{\mathrm{n}} \boldsymbol{\alpha}\right)=\frac{\boldsymbol{\mathrm{sin}}\left(\mathrm{2}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \boldsymbol{\alpha}\right)}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{sin}\left(\alpha\right)} \\ $$$$\boldsymbol{\mathrm{prove}} \\ $$
Question Number 143048 Answers: 1 Comments: 0
Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672
Terms of Service
Privacy Policy
Contact: info@tinkutara.com