Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 668
Question Number 151315 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{16}^{\mathrm{2}} \:\:;\:\:\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{24}^{\mathrm{2}} \\ $$$$\mathrm{z}^{\mathrm{2}} +\mathrm{t}^{\mathrm{2}} =\mathrm{42}^{\mathrm{2}} \:\:\mathrm{and}\:\:\mathrm{t}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} =\mathrm{38}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\:\mathrm{max}\left[\left(\mathrm{x}+\mathrm{z}\right)\left(\mathrm{y}+\mathrm{t}\right)\right]=? \\ $$
Question Number 151311 Answers: 0 Comments: 0
Question Number 151308 Answers: 0 Comments: 0
Question Number 151307 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\mathrm{x}\sqrt{\mathrm{x}}\:-\:\mathrm{26}\sqrt{\mathrm{x}}\:=\:\mathrm{5} \\ $$$$\mathrm{find}\:\:\mathrm{x}\:-\:\mathrm{5}\sqrt{\mathrm{x}}\:=\:? \\ $$
Question Number 151300 Answers: 3 Comments: 0
$$\mathrm{5}\:\centerdot\:\mathrm{6},\mathrm{02}\centerdot\mathrm{10}^{\mathrm{23}} \:=\:?\:\left(\mathrm{solution}\right) \\ $$$$\left.\mathrm{a}\left.\right)\mathrm{3},\mathrm{01}\centerdot\mathrm{10}^{\mathrm{24}} \:\:\:\mathrm{b}\right)\mathrm{3},\mathrm{01}\centerdot\mathrm{10}^{\mathrm{22}} \\ $$
Question Number 151294 Answers: 1 Comments: 0
Question Number 151287 Answers: 0 Comments: 2
$${I}\:=\:\int_{{x}={a}} ^{\:{x}={b}} \sqrt{{u}^{\mathrm{2}} \:+\:{v}^{\mathrm{2}} {x}^{\mathrm{2}} \:−\:\mathrm{2}{uvwx}}\:{dx}\:=\:? \\ $$
Question Number 151284 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\frac{\mathrm{a}}{\mathrm{3}^{\boldsymbol{\mathrm{x}}-\mathrm{1}} }\:=\:\frac{\mathrm{b}}{\mathrm{3}^{\boldsymbol{\mathrm{y}}+\mathrm{2}} }\:=\:\frac{\mathrm{c}}{\mathrm{3}^{\boldsymbol{\mathrm{z}}-\mathrm{1}} }\:=\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$\mathrm{find}\:\:\mathrm{abc}\:=\:? \\ $$
Question Number 151282 Answers: 0 Comments: 0
Question Number 151281 Answers: 0 Comments: 0
Question Number 151278 Answers: 1 Comments: 0
$$\int\:\frac{\boldsymbol{\mathrm{e}}^{\sqrt{\boldsymbol{\mathrm{x}}\:-\:\mathrm{1}}} }{\:\sqrt{\boldsymbol{\mathrm{x}}\:-\:\mathrm{1}}}\:\mathrm{dx}\:=\:? \\ $$
Question Number 151276 Answers: 2 Comments: 2
$$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{cos}^{−\mathrm{1}} \left(\mathrm{cos}\:\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 151272 Answers: 0 Comments: 1
Question Number 151269 Answers: 0 Comments: 1
Question Number 151268 Answers: 0 Comments: 0
$$\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} }{{r}}\left[\psi\left(\frac{{r}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}\right)−\psi\left(\frac{{r}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}}\right)\right] \\ $$
Question Number 151265 Answers: 1 Comments: 3
Question Number 151256 Answers: 2 Comments: 0
$$\:{A}_{{n}} =\mathrm{2}^{{n}} +\mathrm{3}^{{n}} +\mathrm{4}^{{n}} +\mathrm{5}^{{n}} \\ $$$${B}_{{n}} =\mathrm{100}^{{n}} +\mathrm{101}^{{n}} +\mathrm{102}^{{n}} +\mathrm{103}^{{n}} \\ $$$$\left.\mathrm{1}\right)\boldsymbol{{find}}\:\boldsymbol{{values}}\:\boldsymbol{{of}}\:\boldsymbol{{n}}\:\boldsymbol{{while}}\:\mathrm{7}\mid\boldsymbol{{A}}_{\boldsymbol{{n}}} \\ $$$$\left.\mathrm{2}\right)\:\boldsymbol{{show}}\:\boldsymbol{{that}}\:\boldsymbol{{B}}_{\boldsymbol{{n}}} \equiv\boldsymbol{{A}}_{\boldsymbol{{n}}} \left[\mathrm{7}\:\right] \\ $$
Question Number 151248 Answers: 1 Comments: 0
Question Number 151247 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} \centerdot\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} \centerdot\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{4}} \centerdot\mathrm{4}}\:+\:...\:=\:? \\ $$
Question Number 151246 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{cosx}\right)\mathrm{dx}\:\mathrm{and}\:\mathrm{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{ln}\left(\mathrm{sinx}\right)\mathrm{dx} \\ $$
Question Number 151241 Answers: 1 Comments: 0
Question Number 151230 Answers: 4 Comments: 2
$$ \\ $$$$\:\:\:\:{prove}: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}\:\left(\:\mathrm{1}+{x}^{\:\mathrm{2}} \right)}{{x}^{\:\mathrm{2}} \left(\mathrm{1}+{x}^{\:\mathrm{2}} \right)}{dx}=\:\pi\:{ln}\left(\frac{{e}}{\mathrm{2}}\:\right)\:.. \\ $$
Question Number 151226 Answers: 0 Comments: 0
Question Number 151224 Answers: 1 Comments: 0
Question Number 151221 Answers: 1 Comments: 2
$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{a}\right)}\mathrm{dx} \\ $$
Question Number 151220 Answers: 3 Comments: 0
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}+\mathrm{1}}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{4}}\left(\pi−\mathrm{2ln}\:\mathrm{2}\right) \\ $$
Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672
Terms of Service
Privacy Policy
Contact: info@tinkutara.com