Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 667
Question Number 150884 Answers: 1 Comments: 0
Question Number 150883 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{any}\:\mathrm{real}\:\mathrm{root}\:\boldsymbol{\alpha}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}:\:\:\mathrm{x}^{\mathrm{6}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{4x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:+\:\mathrm{4}\:;\:\mathrm{n}\in\mathbb{N}-\left\{\mathrm{0}\right\} \\ $$$$\mathrm{verify}:\:\:\mid\boldsymbol{\alpha}\mid\:>\:\sqrt[{\mathrm{2}\boldsymbol{\mathrm{n}}}]{\mathrm{2}} \\ $$
Question Number 150881 Answers: 1 Comments: 0
$$\mathrm{y}\:=\:\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{\boldsymbol{\mathrm{x}}} \centerdot\:\left(\frac{\mathrm{b}}{\mathrm{x}}\right)^{\boldsymbol{\mathrm{a}}} \centerdot\:\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{\boldsymbol{\mathrm{b}}} \:\Rightarrow\:\mathrm{y}\:^{'} \:=\:? \\ $$
Question Number 150880 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{1} \\ $$$$\mathrm{find}\:\boldsymbol{\mathrm{min}}\left(\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{9}}{\mathrm{b}}\:+\:\frac{\mathrm{25}}{\mathrm{c}}\right)\:=\:? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{7}\left.\mathrm{3}\left.\:\:\:\mathrm{b}\right)\mathrm{75}\:\:\:\mathrm{c}\right)\mathrm{105}\:\:\:\mathrm{d}\right)\mathrm{81}\:\:\:\mathrm{e}\right)\mathrm{83} \\ $$
Question Number 150876 Answers: 0 Comments: 0
Question Number 150865 Answers: 0 Comments: 0
Im{f'(z)} = 6x(2y-1) and f(0) = 3 - 2i, f(1) = 6 - 5i. Find f(2 + i)
Question Number 150864 Answers: 1 Comments: 0
Question Number 150862 Answers: 0 Comments: 0
Question Number 150861 Answers: 1 Comments: 0
$${Find}\:\:{the}\:\:{solution}\:\:{of}\:\:: \\ $$$$\left\{_{{x}^{\mathrm{2}} +\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} −\mathrm{4}\:=\:\mathrm{0}} ^{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{3}{y}^{\mathrm{2}} +\mathrm{7}\:=\:\mathrm{0}} \right. \\ $$$${Please}\:\:{show}\:\:{your}\:\:{working}... \\ $$
Question Number 150859 Answers: 0 Comments: 0
Question Number 150853 Answers: 0 Comments: 2
$$\mathrm{log}_{\mathrm{2021}} \:\sqrt{\mathrm{x}\::\:\sqrt{\mathrm{x}\::\:\sqrt{\mathrm{x}\::..}}}\:=\:\mathrm{674} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 150852 Answers: 0 Comments: 0
$$\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{xyz}\:\leqslant\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:-\:\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:\leqslant\:\mathrm{1} \\ $$
Question Number 150841 Answers: 2 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{b}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 150840 Answers: 1 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)}\:\mathrm{dx}\:=\:? \\ $$
Question Number 150839 Answers: 2 Comments: 0
$$\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{expression}\:\mathrm{for}\:\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$
Question Number 150838 Answers: 1 Comments: 0
Question Number 150828 Answers: 2 Comments: 0
$$ \\ $$$$\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{2}} \left({x}\:\right)}{{x}\sqrt{{x}}}\:{dx}\overset{?} {=}\:\sqrt{\pi} \\ $$
Question Number 150827 Answers: 0 Comments: 0
Question Number 150807 Answers: 5 Comments: 0
$$\mathrm{For}\:\mathrm{matris}\:\mathrm{solution}: \\ $$$$\begin{cases}{\mathrm{2x}\:-\:\mathrm{3y}\:=\:\mathrm{8}}\\{\mathrm{x}\:+\:\mathrm{5y}\:=\:-\:\mathrm{9}}\end{cases} \\ $$
Question Number 150946 Answers: 0 Comments: 0
Question Number 150944 Answers: 4 Comments: 3
Question Number 150804 Answers: 1 Comments: 0
Question Number 150794 Answers: 0 Comments: 0
Question Number 150793 Answers: 0 Comments: 2
$$\left({R}−{r}\right)^{\mathrm{2}} \:+\:{R}^{\mathrm{2}} \:=\:\left({R}\:+\:{r}\right)^{\mathrm{2}} \:\Leftrightarrow \\ $$$${R}^{\mathrm{2}} \:+\:{r}^{\mathrm{2}} −\mathrm{2}{rR}\:+\:{R}^{\mathrm{2}} \:=\:{R}^{\mathrm{2}} \:+\:{r}^{\mathrm{2}} \:+\mathrm{2}{rR}\:\Rightarrow \\ $$$${R}^{\mathrm{2}} \:=\:\mathrm{4}{rR}\:\Rightarrow\:{r}\:=\:\frac{{R}}{\mathrm{4}}\:=\:\mathrm{1}{cm} \\ $$$$\mathscr{A}_{{S}} \:=\:\pi{r}^{\mathrm{2}} \:=\:\pi×\mathrm{1}{cm}^{\mathrm{2}} \:=\:\pi{cm}^{\mathrm{2}} \\ $$
Question Number 150789 Answers: 1 Comments: 0
Question Number 150786 Answers: 1 Comments: 0
Pg 662 Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671
Terms of Service
Privacy Policy
Contact: info@tinkutara.com