Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 667
Question Number 151415 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left({x}\right){arctg}\left({x}\right)}{{x}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{dx} \\ $$
Question Number 151404 Answers: 1 Comments: 1
Question Number 151403 Answers: 0 Comments: 5
$$\:{x}^{\mathrm{3}} =\mathrm{3}^{{x}} \\ $$$${how}\:{do}\:{i}\:{pls}\:{use}\:{lambert}\:{to}\: \\ $$$$\:{find}\:{x}=\mathrm{3} \\ $$
Question Number 151401 Answers: 1 Comments: 1
Question Number 151393 Answers: 2 Comments: 0
Question Number 151391 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\in\mathbb{R}\:\:\mathrm{and} \\ $$$$\left(\mathrm{a}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{b}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{9}=\mathrm{6}\left(\mathrm{a}+\mathrm{b}\right) \\ $$$$\mathrm{find}\:\:\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} =? \\ $$
Question Number 151383 Answers: 1 Comments: 1
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y}>\mathrm{0}\:\:\mathrm{peove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}\:\centerdot\:\frac{\mathrm{2}}{\frac{\mathrm{1}}{\mathrm{x}}+\frac{\mathrm{1}}{\mathrm{y}}}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\:\centerdot\:\sqrt{\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\:\geqslant\:\mathrm{xy} \\ $$
Question Number 151377 Answers: 0 Comments: 2
$$\:\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:\left(\boldsymbol{\mathrm{y}}+\mathrm{13}\right)\left(\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{a}}\right)\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\: \\ $$$$\:\:\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}?\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{means}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{expkain}}? \\ $$$$ \\ $$
Question Number 151376 Answers: 0 Comments: 0
$$\:\:\:\:\int\:\frac{\mathrm{x}^{\mathrm{8}} +\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{9}} −\mathrm{2x}^{\mathrm{8}} +\mathrm{1}}}\:\mathrm{dx}\:?\: \\ $$
Question Number 151374 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}\:\left(\frac{\mathrm{1}}{{x}}\:\right)}{\mathrm{1}\:+{e}^{\:\mathrm{2}{x}} }\:{dx}\:\overset{?} {=}\:\frac{\mathrm{3}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{2}\:\right) \\ $$$$\:\:{m}.{n} \\ $$
Question Number 151371 Answers: 1 Comments: 0
$$\mathrm{a};\mathrm{b}\in\mathbb{N} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{2}} \centerdot\left(\mathrm{a}-\mathrm{b}\right)=\mathrm{128} \\ $$$$\mathrm{ab}=? \\ $$
Question Number 151361 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}=\mathrm{45}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{1}\:-\:\mathrm{tan}\left(\mathrm{x}\right)}{\mathrm{1}\:-\:\mathrm{tan}\left(\mathrm{y}\right)}\:=\:\mathrm{tan}\left(\mathrm{2y}\right) \\ $$
Question Number 151360 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\mathrm{find}\:\mathrm{max}\left(\Re\left(\mathrm{I}\right)+\Im\left(\mathrm{I}\right)\right)\:\mathrm{for}\:\mathrm{the}\:\mathrm{integral} \\ $$$$\:\:\mathrm{I}\:=\:\int_{{z}} ^{\:{z}+\mathrm{1}} \:\mathrm{cos}\left(\mathrm{cos}\left(\mathrm{cos}\left({x}^{\mathrm{cos}\left(\mathrm{cos}\left(\mathrm{cos}\left({x}\right)\right)\right)} \right)\right)\right){dx} \\ $$$$\:\:{z}\:\in\:\mathbb{R} \\ $$$$\: \\ $$
Question Number 151357 Answers: 1 Comments: 6
Question Number 151351 Answers: 1 Comments: 0
Question Number 151350 Answers: 0 Comments: 4
Question Number 151346 Answers: 1 Comments: 0
$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{5x}\:+\:\mathrm{25}\:=\:\mathrm{0}\:\:\Rightarrow\:\:\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{100}\:=\:? \\ $$
Question Number 151345 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} }{\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} +\mathrm{e}^{−\mathrm{cos}\:\mathrm{x}} }\mathrm{dx} \\ $$
Question Number 151344 Answers: 2 Comments: 0
$$\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{4x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\:\Rightarrow\:\:\mathrm{x}^{\mathrm{3}} \:+\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:? \\ $$
Question Number 151341 Answers: 1 Comments: 0
$$\int_{\alpha} ^{\beta} \frac{\mathrm{dx}}{\mathrm{x}\sqrt{\left(\mathrm{x}−\alpha\right)\left(\beta−\mathrm{x}\right)\:}}=\frac{\pi}{\:\sqrt{\alpha\beta}} \\ $$$$\mathrm{where}\:\alpha,\beta\:>\mathrm{0} \\ $$
Question Number 151340 Answers: 1 Comments: 0
$$\mathrm{Evaluate} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \frac{\left(\mathrm{2x}^{\mathrm{332}} +\mathrm{x}^{\mathrm{998}} +\mathrm{4x}^{\mathrm{1668}} .\mathrm{sin}\:\mathrm{x}^{\mathrm{691}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{666}} }\mathrm{dx} \\ $$
Question Number 151332 Answers: 1 Comments: 2
$$\mathrm{which}\:\mathrm{is}\:\mathrm{larger}? \\ $$$$\mathrm{2}^{\sqrt{\mathrm{10}}} \:\:\mathrm{or}\:\:\mathrm{3}^{\mathrm{2}} \\ $$
Question Number 151322 Answers: 1 Comments: 1
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\:\left(\mathrm{x};\mathrm{y}\right)\:\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy}: \\ $$$$\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{3x}\:+\:\mathrm{y}\:=\:\mathrm{0} \\ $$
Question Number 151321 Answers: 0 Comments: 0
Question Number 151317 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\boldsymbol{\mathrm{x}}=\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{7}}\:-\:\sqrt{\mathrm{6}}}\:+\:\sqrt[{\mathrm{3}}]{\sqrt{\mathrm{7}}\:+\:\sqrt{\mathrm{6}}} \\ $$$$\mathrm{find}\:\:\mathrm{E}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{6}} \:-\:\mathrm{6x}^{\mathrm{4}} \:+\:\mathrm{9x}^{\mathrm{2}} \:=\:? \\ $$
Question Number 151316 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{Find}\:{positive}\:{integers}\: \\ $$$$\:\:\:\:\:{a}\:{and}\:{b}\:{such}\:{that}\: \\ $$$$\:\:\:\:\:\left(\sqrt[{\mathrm{3}}]{{a}}\:+\sqrt[{\mathrm{3}}]{{b}}\:−\mathrm{1}\right)^{\mathrm{2}} =\:\mathrm{49}+\:\mathrm{20}\sqrt[{\mathrm{3}}]{\mathrm{6}}\: \\ $$
Pg 662 Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670 Pg 671
Terms of Service
Privacy Policy
Contact: info@tinkutara.com