Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 666
Question Number 151518 Answers: 0 Comments: 0
Question Number 151513 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{the}\:\mathrm{lines} \\ $$$${px}−{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{3}{x}+{y}+\mathrm{1}=\mathrm{0}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{45}° \\ $$
Question Number 151504 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\:{x}}{\:\sqrt{{x}}\:\sqrt{{x}+\mathrm{1}}\:\sqrt{\mathrm{2}{x}+\mathrm{1}}}\:{dx} \\ $$$$\: \\ $$
Question Number 151503 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}−\mathrm{1}}{\:\sqrt{\mathrm{2}^{{x}} −\mathrm{1}}\:\mathrm{ln}\left(\mathrm{2}^{{x}} −\mathrm{1}\right)}\:{dx} \\ $$$$\: \\ $$
Question Number 151501 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\left(\mathrm{log}\:{x}\:+\:\mathrm{1}\right){x}^{{x}} \:{dx} \\ $$$$\: \\ $$
Question Number 151496 Answers: 1 Comments: 0
$$\forall{x},{y}\in\mathbb{R}_{+} ^{\ast} ,\:{show}\:{that}\:\frac{{x}}{{x}^{\mathrm{4}} +{y}^{\mathrm{2}} }+\frac{{y}}{{y}^{\mathrm{4}} +{x}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{{xy}} \\ $$
Question Number 151495 Answers: 0 Comments: 4
Question Number 151493 Answers: 0 Comments: 2
$$\:\:\:\frac{\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{2}}−\mathrm{6}{x}\right)+\mathrm{sin}\:\left(\pi+\mathrm{4}{x}\right)+\mathrm{sin}\:\left(\mathrm{3}\pi−{x}\right)}{\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{2}}+\mathrm{6}{x}\right)+\mathrm{cos}\:\left(\mathrm{4}{x}−\mathrm{2}\pi\right)+\mathrm{cos}\:\left({x}+\mathrm{2}\pi\right)}\:=? \\ $$
Question Number 151492 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{tan}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$
Question Number 151490 Answers: 1 Comments: 0
$$\begin{cases}{\mathrm{a}^{\mathrm{2}} =\mathrm{2a}+\mathrm{b}}\\{\mathrm{b}^{\mathrm{2}} =\mathrm{a}+\mathrm{2b}}\end{cases}\:\:\mathrm{and}\:\:\mathrm{a}\neq\mathrm{b}\:\:\mathrm{find}\:\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{1}} \\ $$
Question Number 151486 Answers: 1 Comments: 0
$$\int{ln}\left({sinx}\right)=?\: \\ $$$${x}\:\neq\:\mathrm{0}\:+\:\mathrm{2}{k}\pi\:;\:{k}\:\in\:\mathbb{Z} \\ $$
Question Number 151485 Answers: 1 Comments: 0
Question Number 151481 Answers: 0 Comments: 2
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t}\in\mathbb{R}\:\:\mathrm{and} \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}\:\leqslant\:\mathrm{3t}\:\:;\:\:\mathrm{y}+\mathrm{z}+\mathrm{t}\:\leqslant\:\mathrm{3x} \\ $$$$\mathrm{z}+\mathrm{t}+\mathrm{x}\:\leqslant\:\mathrm{3y}\:\:;\:\:\mathrm{t}+\mathrm{x}+\mathrm{y}\:\leqslant\:\mathrm{3z} \\ $$$$\mathrm{compare}:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t} \\ $$
Question Number 151636 Answers: 1 Comments: 4
Question Number 151475 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\boldsymbol{\mathrm{x}}\in\mathbb{R}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{x}^{\mathrm{6}} \:-\:\mathrm{x}\:+\:\mathrm{1}\:>\:\mathrm{0} \\ $$
Question Number 151468 Answers: 2 Comments: 0
$$\mathrm{z}^{\mathrm{2}} −\mathrm{7z}+\mathrm{16}=\mathrm{i}\left(\mathrm{z}−\mathrm{11}\right) \\ $$$$ \\ $$
Question Number 151461 Answers: 1 Comments: 0
$$\int\frac{\mathrm{xdx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{4x}^{\mathrm{2}} +\mathrm{5}} \\ $$
Question Number 151460 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{2x}\:+\:\mathrm{2} \\ $$$$\mathrm{and}\:\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{x}}\:+\:\mathrm{1} \\ $$$$\mathrm{find}\:\:\:\left[\:\mathrm{f}\:{o}\:\mathrm{g}\:\right]\:\left(\mathrm{x}\right)\:=\:? \\ $$
Question Number 151454 Answers: 0 Comments: 2
$${when}\:{a}\:{die}\:{is}\:{rolled}\:\mathrm{42}\:{times}\:{it}\:{is}\:{so} \\ $$$${happened}\:{that}\:{a}\:{face}\:{having}\:{the}\:{digit}\:{i} \\ $$$${times}\:{occured}\:\mathrm{2}{i}\:{times}.\:{then}\:{find}\:{the} \\ $$$${mean}\:{deviation}\:{from}\:{the}\:{mean}\:{of}\:{this} \\ $$$${discrete}\:{frequency}\:{distribution}. \\ $$$${ans}\:{is}\:\frac{\mathrm{80}}{\mathrm{63}} \\ $$$${sol}\:{pls} \\ $$
Question Number 151453 Answers: 0 Comments: 7
$$\mathrm{find}\:\mathrm{all}\:\mathrm{continous}\:\mathrm{functions}\:\mathrm{f}\::\:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:=\:\mathrm{f}\left(\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{4}} }\right)\:;\:\forall\mathrm{x}\in\mathbb{R} \\ $$
Question Number 151449 Answers: 2 Comments: 0
$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}\:=\:? \\ $$
Question Number 151448 Answers: 1 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{rtimetric}\:\mathrm{mean}\:\geqslant\:\boldsymbol{\mathrm{G}}\mathrm{eometric}\:\mathrm{mean} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{2}}\:\geqslant\:\sqrt{\mathrm{ab}} \\ $$
Question Number 151447 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{prove}\:{that}... \\ $$$$\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}\:\left({x}\:\right)}{\mathrm{1}+\:{e}^{\:{x}} }\:{dx}=\:\frac{−\mathrm{1}}{\mathrm{2}}\:{ln}^{\:\mathrm{2}} \left(\mathrm{2}\right)\:..\blacksquare \\ $$
Question Number 151444 Answers: 2 Comments: 0
Question Number 151436 Answers: 0 Comments: 0
Question Number 151435 Answers: 1 Comments: 4
Pg 661 Pg 662 Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670
Terms of Service
Privacy Policy
Contact: info@tinkutara.com