Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 666

Question Number 145660    Answers: 1   Comments: 0

Question Number 145652    Answers: 2   Comments: 0

Question Number 145646    Answers: 1   Comments: 0

Find the arc lenght of the function y^2 = (x^3 /a) where a is a constant for 0≤x≤((7a)/3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{lenght}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:{y}^{\mathrm{2}} \:=\:\frac{{x}^{\mathrm{3}} }{{a}}\:\mathrm{where}\:{a}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{for} \\ $$$$\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{7}{a}}{\mathrm{3}} \\ $$

Question Number 145645    Answers: 0   Comments: 0

∫_0 ^a x^(−(x/a)) dx

$$\int_{\mathrm{0}} ^{{a}} {x}^{−\frac{{x}}{{a}}} {dx} \\ $$

Question Number 145641    Answers: 0   Comments: 0

Let g:R→R be given by g(x) = 3 + 4x .Prove by induction that, for all positive integers n, g^n (x) = (4^n −1) + 4^n (x). If for every positive integer k, we inteprete g^(−k) as the inverse of the function g^k .Prove that the above formula holds alsl for all negative integers n.

$$\mathrm{Let}\:\mathrm{g}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{be}\:\mathrm{given}\:\mathrm{by}\:\mathrm{g}\left({x}\right)\:=\:\mathrm{3}\:+\:\mathrm{4}{x}\:.\mathrm{Prove}\:\mathrm{by}\:\mathrm{induction} \\ $$$$\mathrm{that},\:\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:{n},\: \\ $$$$\mathrm{g}^{{n}} \left({x}\right)\:=\:\left(\mathrm{4}^{{n}} −\mathrm{1}\right)\:+\:\mathrm{4}^{{n}} \left({x}\right). \\ $$$$\mathrm{If}\:\mathrm{for}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{integer}\:{k},\:\mathrm{we}\:\mathrm{inteprete}\:\mathrm{g}^{−{k}} \:\mathrm{as}\:\mathrm{the}\:\mathrm{inverse} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{g}^{{k}} .\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{above}\:\mathrm{formula}\:\mathrm{holds}\:\mathrm{alsl} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{negative}\:\mathrm{integers}\:{n}. \\ $$

Question Number 145620    Answers: 1   Comments: 0

(d/dx)(((x+((x+((x+...))^(1/3) ))^(1/3) ))^(1/3) )=?

$$\frac{{d}}{{dx}}\left(\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+\sqrt[{\mathrm{3}}]{{x}+...}}}\right)=? \\ $$

Question Number 145615    Answers: 0   Comments: 2

Let a,b,c > 0 and abc = 1. Prove that (a^3 /((a+1)^2 ))+(b^3 /((b+1)^2 ))+(c^3 /((c+1)^2 )) ≥((a+b+c)/4)

$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:{abc}\:=\:\mathrm{1}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{a}^{\mathrm{3}} }{\left({a}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{b}^{\mathrm{3}} }{\left({b}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{{c}^{\mathrm{3}} }{\left({c}+\mathrm{1}\right)^{\mathrm{2}} }\:\geqslant\frac{{a}+{b}+{c}}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 145602    Answers: 5   Comments: 0

.....Advanced .........Calculus..... Q:: Find the value of :: determinant ((( i :: 𝛗 := ∫_0 ^( 1) Ln ( Γ ( 2 + x ) )dx = ? )),(( ii :: Ω := Σ_(n=1) ^∞ (( 1)/( n ( 2n + 3 ))) = ?))) .....m.n.july.1970..... ■

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\mathrm{Advanced}\:.........\mathrm{Calculus}..... \\ $$$$\:\:\:\mathrm{Q}::\:\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|}{\:{i}\:::\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Ln}\:\left(\:\Gamma\:\left(\:\mathrm{2}\:+\:{x}\:\right)\:\right){dx}\:=\:?\:\:\:\:}\\{\:{ii}\:::\:\:\:\Omega\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\:{n}\:\left(\:\mathrm{2}{n}\:+\:\mathrm{3}\:\right)}\:=\:?}\\\hline\end{array} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{m}.{n}.{july}.\mathrm{1970}.....\:\:\:\:\blacksquare \\ $$$$ \\ $$

Question Number 145626    Answers: 0   Comments: 2

Question Number 145588    Answers: 3   Comments: 0

Question Number 145583    Answers: 0   Comments: 0

une urne contient N boules dont M boules blanches et N−M boule noires on tire successivement et sans remise n boules de l′urne. soit A_i :′′prelever une boules noires au ieme tirage′′ calculer P(A_i )

$${une}\:{urne}\:{contient}\:{N}\:{boules}\:{dont} \\ $$$${M}\:{boules}\:{blanches}\:{et}\:{N}−{M}\:{boule}\:{noires} \\ $$$${on}\:{tire}\:{successivement}\:{et}\:{sans}\:{remise} \\ $$$${n}\:{boules}\:{de}\:{l}'{urne}. \\ $$$${soit}\:{A}_{{i}} :''{prelever}\:{une}\:{boules}\:{noires}\:{au}\:{ieme} \\ $$$${tirage}'' \\ $$$${calculer}\:{P}\left({A}_{{i}} \right) \\ $$

Question Number 145580    Answers: 0   Comments: 1

Question Number 145578    Answers: 1   Comments: 0

y′′_y=xsin2x solve the differential eqn..

$${y}''\_{y}={xsin}\mathrm{2}{x} \\ $$$${solve}\:{the}\:{differential}\:{eqn}.. \\ $$

Question Number 145577    Answers: 2   Comments: 1

Question Number 145575    Answers: 2   Comments: 0

Question Number 145573    Answers: 1   Comments: 0

Question Number 145609    Answers: 1   Comments: 1

Question Number 145571    Answers: 0   Comments: 0

Question Number 145634    Answers: 2   Comments: 0

let s(x)=Σ_(n=1) ^∞ (((−1)^n )/((2x^2 +2x(√(1+x^2 ))+1)^n )) 1) explicite s(x) 2) calculate ∫_0 ^1 s(x)dx

$$\mathrm{let}\:\mathrm{s}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }+\mathrm{1}\right)^{\mathrm{n}} } \\ $$$$\left.\mathrm{1}\right)\:\mathrm{explicite}\:\mathrm{s}\left(\mathrm{x}\right) \\ $$$$\left.\mathrm{2}\right)\:\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{s}\left(\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 145633    Answers: 0   Comments: 0

find ∫_0 ^1 e^(−x) (√(1+x^2 ))dx (approximat value)

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{e}^{−\mathrm{x}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\left(\mathrm{approximat}\:\mathrm{value}\right) \\ $$

Question Number 145654    Answers: 2   Comments: 0

4cosy−3secy=2tany Find y

$$\mathrm{4}{cosy}−\mathrm{3}{secy}=\mathrm{2}{tany} \\ $$$${Find}\:{y} \\ $$

Question Number 146212    Answers: 1   Comments: 0

K=∫(1/( (√(1+x^3 ))))dx

$$\mathrm{K}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\mathrm{dx} \\ $$

Question Number 145636    Answers: 2   Comments: 0

calculate ∫_0 ^∞ ((arctanx)/((1+x^2 )^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctanx}}{\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 145635    Answers: 0   Comments: 0

calculate ∫_0 ^∞ ((arctan(3x^2 ))/(1+x^2 ))dx

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{arctan}\left(\mathrm{3x}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 145557    Answers: 1   Comments: 0

Question Number 145549    Answers: 1   Comments: 0

Find the equation of the asymptotes to the curve y = f(x) where f(x) = ln(((x+3)/(x−1))) .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{asymptotes}\:\mathrm{to}\:\mathrm{the}\:\mathrm{curve} \\ $$$$\:{y}\:=\:{f}\left({x}\right)\:\mathrm{where}\:{f}\left({x}\right)\:=\:\mathrm{ln}\left(\frac{{x}+\mathrm{3}}{{x}−\mathrm{1}}\right)\:.\: \\ $$

  Pg 661      Pg 662      Pg 663      Pg 664      Pg 665      Pg 666      Pg 667      Pg 668      Pg 669      Pg 670   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com