Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 666
Question Number 150990 Answers: 1 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{I}\:=\:\int_{\mathrm{0}\:} ^{\:\infty} \:\frac{{dx}}{\mathrm{1}+{x}^{{n}} }\:=\:? \\ $$$$\: \\ $$$$\: \\ $$
Question Number 150986 Answers: 1 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{ln}\:\left({x}+\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$
Question Number 150984 Answers: 0 Comments: 0
Question Number 151073 Answers: 2 Comments: 0
$$\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\begin{pmatrix}{\mathrm{50}}\\{\mathrm{0}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{50}}\\{\mathrm{1}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{50}}\\{\mathrm{2}}\end{pmatrix}^{\mathrm{2}} +...+\begin{pmatrix}{\mathrm{50}}\\{\mathrm{49}}\end{pmatrix}^{\mathrm{2}} +\begin{pmatrix}{\mathrm{50}}\\{\mathrm{50}}\end{pmatrix}^{\mathrm{2}} \\ $$
Question Number 151145 Answers: 1 Comments: 0
Question Number 151144 Answers: 1 Comments: 0
Question Number 150979 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x}=\sqrt[{\mathrm{3}}]{\mathrm{4}}+\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\:\:\mathrm{find}\:\:\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=? \\ $$$$ \\ $$
Question Number 150977 Answers: 1 Comments: 0
Question Number 150976 Answers: 0 Comments: 0
Question Number 150974 Answers: 0 Comments: 0
Question Number 150968 Answers: 1 Comments: 0
Question Number 150967 Answers: 1 Comments: 0
$${E}\left({x}+\frac{\mathrm{2}}{{x}}\right)=\frac{{x}^{\mathrm{3}} +\mathrm{1}}{{x}}\:+\frac{{x}^{\mathrm{3}} +\mathrm{8}}{\mathrm{2}{x}^{\mathrm{2}} }\:+\mathrm{3}\:, \\ $$$$\:{E}\left(\mathrm{2}\right)=? \\ $$
Question Number 150966 Answers: 0 Comments: 2
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\in\mathbb{N}^{+} \:\:\mathrm{then}\:\mathrm{determine}\:\mathrm{all}\:\mathrm{the} \\ $$$$\mathrm{prime}\:\mathrm{numbers}\:\boldsymbol{\mathrm{p}}\:\mathrm{which}\:\mathrm{satisfy} \\ $$$$\left(\mathrm{p}\:+\:\mathrm{2}\right)^{\boldsymbol{\mathrm{a}}} \:=\:\left(\mathrm{p}\:-\:\mathrm{2}\right)^{\boldsymbol{\mathrm{b}}} \\ $$
Question Number 150965 Answers: 1 Comments: 0
Question Number 150963 Answers: 1 Comments: 0
$${Given}\:{x}\:,{y}\:{real}\:{number}\:{such}\:{that} \\ $$$$\:\mathrm{0}<\frac{{y}}{{x}}<\frac{\mathrm{1}}{\mathrm{2}}.\:{Find}\:{minimum}\:{value} \\ $$$${of}\:\frac{\mathrm{2}{y}}{{x}−{y}}\:+\frac{\mathrm{3}{x}}{{x}+\mathrm{2}{y}}\:.\: \\ $$
Question Number 150960 Answers: 1 Comments: 1
$$\mathrm{given}\:\mathrm{x}\:,\mathrm{y}\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number}\: \\ $$$$\mathrm{with}\:\mathrm{x}<\mathrm{y}\:\mathrm{and}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} +\mathrm{20l8}\:=\mathrm{30y}^{\mathrm{2}} −\mathrm{300y}+\mathrm{30l8} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$
Question Number 150941 Answers: 2 Comments: 2
$$\int_{\mathrm{1}} ^{\mathrm{4}} \mid{x}−\mathrm{2}\mid{dx} \\ $$$${please}\:{help}\:{me}\:{out} \\ $$
Question Number 150932 Answers: 1 Comments: 0
$$\mathrm{I}=\int\frac{\mathrm{cosx}\:−\:\mathrm{2sinx}}{\mathrm{e}^{\mathrm{2x}} −\mathrm{sinx}}\mathrm{dx}\overset{?} {=} \\ $$
Question Number 150918 Answers: 2 Comments: 2
Question Number 150916 Answers: 1 Comments: 0
$${x}^{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } =\mathrm{2}{x}+\mathrm{1}\: \\ $$$$ \\ $$$${how}\:{can}\:{it}\:{solve}\:{this}\:?{help}\:{me}\:{please} \\ $$
Question Number 150903 Answers: 1 Comments: 0
$${let}\:{x},{y}>\mathrm{0}\:,\:{n}\in\mathbb{N}, \\ $$$${show}\:{that}\:\left({x}+{y}\right)^{{n}} \leqslant\mathrm{2}^{{n}−\mathrm{1}} \left({x}^{{n}} +{y}^{{n}} \right).. \\ $$
Question Number 150895 Answers: 1 Comments: 1
Question Number 150889 Answers: 1 Comments: 0
Question Number 150887 Answers: 1 Comments: 4
Question Number 150886 Answers: 0 Comments: 0
$$\:\varphi\left(\mathrm{n}\right)=\varphi\left(\mathrm{n}+\mathrm{1}\right)=\varphi\left(\mathrm{n}+\mathrm{2}\right)\:\:\mathrm{n}\in\mathrm{N}\:\mathrm{n}_{\mathrm{min}} =? \\ $$$$\varphi\left(\mathrm{n}\right)−\:\mathrm{Euler}\:\mathrm{funcsion} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 150885 Answers: 0 Comments: 0
Pg 661 Pg 662 Pg 663 Pg 664 Pg 665 Pg 666 Pg 667 Pg 668 Pg 669 Pg 670
Terms of Service
Privacy Policy
Contact: info@tinkutara.com