Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 665

Question Number 146854    Answers: 1   Comments: 2

Solve for real numbers the following system of equations { ((a(a+1) = b−1)),((a^2 (b+3)+2a = −1)) :}

$${Solve}\:{for}\:{real}\:{numbers}\:{the}\:{following} \\ $$$${system}\:{of}\:{equations} \\ $$$$\begin{cases}{{a}\left({a}+\mathrm{1}\right)\:=\:{b}−\mathrm{1}}\\{{a}^{\mathrm{2}} \left({b}+\mathrm{3}\right)+\mathrm{2}{a}\:=\:−\mathrm{1}}\end{cases} \\ $$

Question Number 146853    Answers: 0   Comments: 0

Question Number 146850    Answers: 0   Comments: 0

$$ \\ $$$$ \\ $$

Question Number 146849    Answers: 1   Comments: 1

Question Number 146840    Answers: 2   Comments: 0

Question Number 146839    Answers: 0   Comments: 0

Question Number 146838    Answers: 1   Comments: 0

Given 4^x +4^(−x) −2^(2−x) +2^(2+x) −7=0 ,x>0 find 2^x +2^(−x) . if x∈[ −(π/6),0 ] then minimum value of function f(x)=cot (x+(π/3))−tan (((2π)/3)−x) when x = ?

$$\mathrm{Given}\:\mathrm{4}^{\mathrm{x}} +\mathrm{4}^{−\mathrm{x}} −\mathrm{2}^{\mathrm{2}−\mathrm{x}} +\mathrm{2}^{\mathrm{2}+\mathrm{x}} −\mathrm{7}=\mathrm{0}\:,\mathrm{x}>\mathrm{0} \\ $$$$\:\mathrm{find}\:\mathrm{2}^{\mathrm{x}} +\mathrm{2}^{−\mathrm{x}} . \\ $$$$\: \\ $$$$\:\mathrm{if}\:\mathrm{x}\in\left[\:−\frac{\pi}{\mathrm{6}},\mathrm{0}\:\right]\:\mathrm{then}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cot}\:\left(\mathrm{x}+\frac{\pi}{\mathrm{3}}\right)−\mathrm{tan}\:\left(\frac{\mathrm{2}\pi}{\mathrm{3}}−\mathrm{x}\right)\: \\ $$$$\mathrm{when}\:\mathrm{x}\:=\:?\: \\ $$

Question Number 146837    Answers: 0   Comments: 0

p

$${p} \\ $$

Question Number 146836    Answers: 0   Comments: 0

Σ_(n=1) ^∞ (1/(ϕ^( n) F_n )) =?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\varphi^{\:{n}} \:\mathrm{F}_{{n}} }\:=? \\ $$

Question Number 146835    Answers: 2   Comments: 0

calculate ∫_0 ^∞ (dx/((x^2 +3)^2 (x^2 +4)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} } \\ $$

Question Number 146824    Answers: 1   Comments: 0

Question Number 146868    Answers: 1   Comments: 0

if tan^2 x+sec x=a+1 has at least one solution then find the complete set of values of ′a′?

$${if}\:\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{sec}\:{x}={a}+\mathrm{1}\:{has}\:{at}\:{least}\: \\ $$$${one}\:{solution}\:{then}\:{find}\:{the}\:{complete}\:{set} \\ $$$${of}\:{values}\:{of}\:\:'{a}'? \\ $$

Question Number 146817    Answers: 1   Comments: 0

Question Number 146856    Answers: 0   Comments: 0

3. Calcula mediante una suma de Riemann una aproximaci´on al ´area limitada por la funci´on f(x) = −2x 2 − 4x + 30 y el eje x en el intervalo [−5, 3] con n rect´angulos. Δx=((3−(−5))/n) ⇒(8/n) ∴ x_0 =−5 ∴ a=x_0 =−5 x_1 =−5+1Δx x_2 =−5+2Δx x_3 =−5+3Δx ⋮ x_n =−5+nΔx

$$ \\ $$3. Calcula mediante una suma de Riemann una aproximaci´on al ´area limitada por la funci´on f(x) = −2x 2 − 4x + 30 y el eje x en el intervalo [−5, 3] con n rect´angulos. $$ \\ $$$$\Delta{x}=\frac{\mathrm{3}−\left(−\mathrm{5}\right)}{{n}}\:\Rightarrow\frac{\mathrm{8}}{{n}} \\ $$$$\therefore\:{x}_{\mathrm{0}} =−\mathrm{5} \\ $$$$ \\ $$$$\therefore\:{a}={x}_{\mathrm{0}} =−\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{1}} =−\mathrm{5}+\mathrm{1}\Delta{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{2}} =−\mathrm{5}+\mathrm{2}\Delta{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{x}_{\mathrm{3}} =−\mathrm{5}+\mathrm{3}\Delta{x} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\vdots \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{x}_{{n}} =−\mathrm{5}+{n}\Delta{x} \\ $$$$ \\ $$

Question Number 146799    Answers: 1   Comments: 0

Question Number 146791    Answers: 1   Comments: 0

∫(x/(1+cos^2 (x)))dx

$$\int\frac{\mathrm{x}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx} \\ $$

Question Number 146790    Answers: 1   Comments: 0

∫(1/x) e^(−(1/x^2 )) dx

$$\int\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \mathrm{dx} \\ $$

Question Number 146784    Answers: 2   Comments: 2

Question Number 146782    Answers: 1   Comments: 0

Find the modulus of a complex number: Z = cos 40 + i sin 40 +1 = ?

$${Find}\:{the}\:{modulus}\:{of}\:{a}\:{complex} \\ $$$${number}: \\ $$$${Z}\:=\:{cos}\:\mathrm{40}\:+\:{i}\:{sin}\:\mathrm{40}\:+\mathrm{1}\:=\:? \\ $$

Question Number 146780    Answers: 1   Comments: 0

find by residue ∫_0 ^( 2π) (dθ/(1+ksinθ)) ,0<k<1

$${find}\:{by}\:{residue}\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{d}\theta}{\mathrm{1}+{ksin}\theta}\:\:\:,\mathrm{0}<{k}<\mathrm{1} \\ $$

Question Number 146778    Answers: 1   Comments: 0

Find the modulus of a complex number: Z = cos 40 + i sin 20 + 1 = ?

$${Find}\:{the}\:{modulus}\:{of}\:{a}\:{complex} \\ $$$${number}: \\ $$$${Z}\:=\:{cos}\:\mathrm{40}\:+\:{i}\:{sin}\:\mathrm{20}\:+\:\mathrm{1}\:=\:? \\ $$

Question Number 146776    Answers: 0   Comments: 2

Question Number 146775    Answers: 3   Comments: 0

Prove that ∫^( 𝛑) _( 0) tln(sint)dt= −(𝛑^2 /2)ln(2)

$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\:\:\underset{\:\mathrm{0}} {\int}^{\:\boldsymbol{\pi}} \boldsymbol{{tln}}\left(\boldsymbol{{sint}}\right)\boldsymbol{{dt}}=\:−\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{2}\right) \\ $$

Question Number 146793    Answers: 1   Comments: 0

∀n≥2, u_n =Π_(k=2) ^n cos ((π/2^k )) et v_n =u_n sin ((π/2^n )) convergence, nature, sens of variations and adjantes? u_n and v_n help me please

$$\forall{n}\geqslant\mathrm{2},\:{u}_{{n}} =\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:{et}\:{v}_{{n}} ={u}_{{n}} \mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right) \\ $$$${convergence},\:{nature},\:{sens}\:{of}\:{variations}\:{and}\:{adjantes}? \\ $$$${u}_{{n}} \:{and}\:{v}_{{n}} \\ $$$${help}\:{me}\:{please} \\ $$

Question Number 146772    Answers: 1   Comments: 0

If z=cos θ+i sin θ, prove that cos^6 θ=(1/(32))(cos 6θ+6cos 4θ+15cos 2θ+10). Hence or otherwise, find the value of ∫_0 ^( a) (√((a^2 −x^2 )^5 )) dx.

$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{6cos}\:\mathrm{4}\theta+\mathrm{15cos}\:\mathrm{2}\theta+\mathrm{10}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{a}} \sqrt{\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dx}. \\ $$

Question Number 146771    Answers: 1   Comments: 0

Given that y′′−4y′+3y=0, y(0)=0, y′(0)=2, find y(ln 2).

$$\mathrm{Given}\:\mathrm{that}\:{y}''−\mathrm{4}{y}'+\mathrm{3}{y}=\mathrm{0},\:{y}\left(\mathrm{0}\right)=\mathrm{0},\:{y}'\left(\mathrm{0}\right)=\mathrm{2}, \\ $$$$\mathrm{find}\:{y}\left(\mathrm{ln}\:\mathrm{2}\right). \\ $$

  Pg 660      Pg 661      Pg 662      Pg 663      Pg 664      Pg 665      Pg 666      Pg 667      Pg 668      Pg 669   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com