Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 663
Question Number 151226 Answers: 0 Comments: 0
Question Number 151224 Answers: 1 Comments: 0
Question Number 151221 Answers: 1 Comments: 2
$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\left(\mathrm{x}−\mathrm{a}\right)}\mathrm{dx} \\ $$
Question Number 151220 Answers: 3 Comments: 0
$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\:\mathrm{x}}{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}+\mathrm{1}}\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{4}}\left(\pi−\mathrm{2ln}\:\mathrm{2}\right) \\ $$
Question Number 151218 Answers: 0 Comments: 2
Question Number 151216 Answers: 1 Comments: 0
$$\:\:\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{number}\: \\ $$$$\:\:\sqrt[{\mathrm{7}}]{\mathrm{x}+\mathrm{3}}\:+\sqrt[{\mathrm{7}}]{\mathrm{6}−\mathrm{x}}\:=\:\sqrt[{\mathrm{7}}]{\mathrm{9}}\: \\ $$
Question Number 151215 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:;\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{1}\:\mathrm{and}\:\lambda\geqslant\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{then}: \\ $$$$\boldsymbol{\lambda}\:\Sigma\:\frac{\mathrm{y}\:+\:\mathrm{z}}{\mathrm{x}}\:+\:\mathrm{3}\:\Sigma\:\mathrm{yz}\:\geqslant\:\mathrm{6}\boldsymbol{\lambda}\:+\:\mathrm{1} \\ $$
Question Number 151212 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,...\mathrm{a}_{\boldsymbol{\mathrm{n}}} >\mathrm{1}\:\:\mathrm{then}: \\ $$$$\sqrt{\frac{\left(\mathrm{a}_{\mathrm{1}} -\mathrm{1}\right)\left(\mathrm{a}_{\mathrm{2}} -\mathrm{1}\right)...\left(\mathrm{a}_{\boldsymbol{\mathrm{n}}} -\mathrm{1}\right)}{\left(\mathrm{a}_{\mathrm{1}} +\mathrm{1}\right)\left(\mathrm{a}_{\mathrm{2}} +\mathrm{1}\right)...\left(\mathrm{a}_{\boldsymbol{\mathrm{n}}} +\mathrm{1}\right)}}\:\leqslant\:\frac{\mathrm{a}_{\mathrm{1}} \mathrm{a}_{\mathrm{2}} ...\mathrm{a}_{\boldsymbol{\mathrm{n}}} }{\mathrm{2}^{\boldsymbol{\mathrm{n}}} } \\ $$
Question Number 151211 Answers: 1 Comments: 0
$$\:{Find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{9}} \: \\ $$$${from}\:{expression}\: \\ $$$$\:\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{3}{x}^{\mathrm{3}} \right)\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{4}} \right)\left(\mathrm{1}+\mathrm{5}{x}^{\mathrm{5}} \right)...\left(\mathrm{1}+\mathrm{10}{x}^{\mathrm{10}} \right) \\ $$
Question Number 151208 Answers: 0 Comments: 0
Question Number 151204 Answers: 1 Comments: 0
Question Number 151205 Answers: 1 Comments: 0
$$\underbrace{ }\:\begin{array}{|c|c|}{\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)^{{x}} +\mathrm{1}\:=\left(\mathrm{2}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} }\\{{x}\:=?\:}\\\hline\end{array} \\ $$
Question Number 151198 Answers: 1 Comments: 0
$$\mathrm{If}\:{a},\mathrm{b}\in\mathrm{R}\:\mathrm{satisfy}\:{a}^{\mathrm{4}} +{b}^{\mathrm{4}} −\mathrm{6}{a}^{\mathrm{2}} {b}^{\mathrm{2}} =\mathrm{9}\:{and} \\ $$$${ab}\left({a}−{b}\right)\left({a}+{b}\right)=−\mathrm{11}\:\mathrm{then}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =? \\ $$
Question Number 151193 Answers: 0 Comments: 0
Question Number 151192 Answers: 0 Comments: 1
Question Number 151189 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{the}\:\mathrm{following}\:\mathrm{relationship} \\ $$$$\mathrm{holds}:\:\left(\boldsymbol{\varphi}-\mathrm{golden}\:\mathrm{ratio}\right) \\ $$$$\mathrm{sinA}\:+\:\frac{\mathrm{sinB}}{\boldsymbol{\varphi}}\:+\:\frac{\mathrm{sinC}}{\boldsymbol{\varphi}}\:<\:\frac{\mathrm{1}}{\boldsymbol{\varphi}}\:+\:\frac{\mathrm{1}+\sqrt{\boldsymbol{\varphi}}+\boldsymbol{\varphi}}{\mathrm{2}\boldsymbol{\varphi}} \\ $$
Question Number 151182 Answers: 0 Comments: 0
$$ \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left(\mathrm{2}{x}\right){ln}\left({x}\right)}{{x}}\:{dx}=\:{m}.\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}\left(\mathrm{1}+\mathrm{2}{x}+{x}^{\mathrm{2}} \right)}{{x}\left({ln}^{\mathrm{2}} \left({x}\right)+\:\pi^{\:\mathrm{2}} \right)}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}=?.... \\ $$
Question Number 151181 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\mid\boldsymbol{\mathrm{x}}\mid<\mathrm{1} \\ $$$$\mathrm{find}\:\:\mathrm{x}−\mathrm{4x}^{\mathrm{2}} +\mathrm{9x}^{\mathrm{3}} −\mathrm{16x}^{\mathrm{4}} +... \\ $$
Question Number 151179 Answers: 2 Comments: 0
$$\mathrm{if}\:\:\mid\boldsymbol{\mathrm{x}}\mid<\mathrm{1} \\ $$$$\mathrm{find}\:\:\mathrm{x}+\mathrm{2x}^{\mathrm{2}} +\mathrm{3x}^{\mathrm{3}} +... \\ $$
Question Number 151175 Answers: 0 Comments: 0
Question Number 151174 Answers: 2 Comments: 0
$$\sqrt[{\mathrm{3}}]{{a}+\sqrt{\mathrm{3}\centerdot\sqrt[{\mathrm{3}}]{{a}+\sqrt{\mathrm{3}\centerdot\sqrt[{\mathrm{3}}]{{a}+\sqrt{\mathrm{3}\centerdot...}}}}}}\:\:=\:\mathrm{3}\: \\ $$$$\mathrm{find}\:\:{a}=? \\ $$
Question Number 151191 Answers: 0 Comments: 0
Question Number 151197 Answers: 1 Comments: 0
$${etude}\:{de}\:{la}\:{monotonie}?\:{svp} \\ $$$${u}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}−{ln}\left({n}\right) \\ $$
Question Number 151196 Answers: 0 Comments: 0
Question Number 151164 Answers: 1 Comments: 1
Question Number 151162 Answers: 1 Comments: 2
Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664 Pg 665 Pg 666 Pg 667
Terms of Service
Privacy Policy
Contact: info@tinkutara.com