Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 662
Question Number 153542 Answers: 1 Comments: 0
$$\:{y}'''+{y}'=\mathrm{sec}\:{x}\: \\ $$
Question Number 153537 Answers: 1 Comments: 0
Question Number 153535 Answers: 1 Comments: 0
$${find}\:\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}=? \\ $$
Question Number 153532 Answers: 0 Comments: 0
$$\: \\ $$$$\:\mathrm{sin}\left(\mathrm{sin}\left(\mathrm{sin}\left({x}^{\mathrm{2}\pi{x}} −\mathrm{1}\right)\right)\right)\:=\:\mathrm{cos}\left(\mathrm{cos}\left(\mathrm{cos}\left({x}^{\mathrm{2}{ex}} +\mathrm{1}\right)\right)\right)\: \\ $$$$\:{x}\:=\:? \\ $$$$\: \\ $$
Question Number 153518 Answers: 2 Comments: 0
$$\mathrm{Show}\:\mathrm{whether}\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{3}\:\:\:\:+\:\:\:\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\:\:\:\:\:\mathrm{is}\:\mathrm{uniformly}\:\mathrm{convegence}\:\mathrm{for}\:\mathrm{real} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$
Question Number 153517 Answers: 0 Comments: 2
$$\:\:{L}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{\mathrm{2019}{x}−\mathrm{2018}}−\mathrm{1}}{\:\sqrt[{\mathrm{2018}}]{{x}^{\mathrm{2019}} }−\mathrm{1}} \\ $$$$\:{then}\:\mathrm{2}×{L}\:=? \\ $$
Question Number 153513 Answers: 2 Comments: 0
$$\left(\frac{{x}}{\mathrm{5}}\:+\:\frac{{y}}{\mathrm{3}}\right)\left(\frac{\mathrm{5}}{{x}}\:+\:\frac{\mathrm{3}}{{y}}\right)\:=\:\mathrm{139},\:\forall{x},{y}\:\in\:\mathbb{R}_{>\mathrm{0}} \\ $$$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{of}\:\:\frac{{x}\:+\:{y}}{\:\sqrt{{xy}}} \\ $$
Question Number 153512 Answers: 1 Comments: 0
$${a},{b},{c}\:\:\in\:\:\mathbb{Z} \\ $$$$\mid{a}−{b}\mid^{\mathrm{3}} \:+\:\mid{b}−{c}\mid^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\mid{a}−{b}\mid\:+\:\mid{b}−{c}\mid\:+\:\mid{c}−{a}\mid \\ $$
Question Number 153508 Answers: 1 Comments: 0
Question Number 153500 Answers: 0 Comments: 0
$${Evaluate}\:{the}\:{line}\:{integral}\:{space} \\ $$$${if}\:{f}\left({r}\right)={Zi}+{Xj}+{Yk}\:{and}\:{C}\:{is}\:{a}\:{helix} \\ $$$${given}\:{by}\:{C}:\:{r}\left({t}\right)=\left({cost},{sint},−\mathrm{3}{t}\right)\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\pi \\ $$
Question Number 153488 Answers: 0 Comments: 2
$$\:\mathrm{my}\:\mathrm{notifications}\:\mathrm{dont}\:\mathrm{work}. \\ $$$$\:\mathrm{am}\:\mathrm{i}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{with}\:\mathrm{this}\:\mathrm{problem}?\: \\ $$$$\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{contact}\:\mathrm{tinku}\:\mathrm{tara}\:\mathrm{and}\: \\ $$$$\:\mathrm{do}\:\mathrm{they}\:\mathrm{still}\:\mathrm{update}\:\mathrm{the}\:\mathrm{app}?\: \\ $$
Question Number 153486 Answers: 1 Comments: 0
Question Number 153483 Answers: 2 Comments: 6
Question Number 153479 Answers: 1 Comments: 0
$${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$
Question Number 153478 Answers: 0 Comments: 0
$$\mathrm{2016}−\mathrm{2}{x}\:=\:\mid{x}−{a}\mid+\mid{x}−{b}\mid+\mid{x}−{c}\mid\:\:\:{has}\:\:{only}\:\:{one}\:\:{solution}\:. \\ $$$${a}<{b}<{c}\:\: \\ $$$${a},{b},{c}\:\in\:\mathbb{Z} \\ $$$${Find}\:\:{the}\:\:{lowest}\:\:{value}\:\:{of}\:\:{c}. \\ $$
Question Number 153505 Answers: 1 Comments: 1
Question Number 153472 Answers: 0 Comments: 0
Question Number 176888 Answers: 1 Comments: 3
Question Number 153458 Answers: 0 Comments: 1
$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$
Question Number 153457 Answers: 2 Comments: 0
Question Number 153450 Answers: 1 Comments: 0
$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} ={x}+{y}+\mathrm{2}}\\{\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={y}+{z}+\mathrm{2}}\\{\left({z}+\mathrm{1}\right)^{\mathrm{2}} ={z}+{x}+\mathrm{2}}\end{cases} \\ $$
Question Number 153449 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}}\:=? \\ $$
Question Number 153447 Answers: 2 Comments: 1
Question Number 153446 Answers: 1 Comments: 1
$$\mathrm{L}^{−\mathrm{1}} \left\{\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} \:-\:\mathrm{12s}\:+\:\mathrm{40}}\right\}\:=\:? \\ $$
Question Number 153438 Answers: 0 Comments: 2
Question Number 153435 Answers: 0 Comments: 0
Pg 657 Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664 Pg 665 Pg 666
Terms of Service
Privacy Policy
Contact: info@tinkutara.com