Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 662

Question Number 153542    Answers: 1   Comments: 0

y′′′+y′=sec x

$$\:{y}'''+{y}'=\mathrm{sec}\:{x}\: \\ $$

Question Number 153537    Answers: 1   Comments: 0

Question Number 153535    Answers: 1   Comments: 0

find ∫((√(x^2 −9))/x^3 ) dx=?

$${find}\:\int\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{9}}}{{x}^{\mathrm{3}} }\:{dx}=? \\ $$

Question Number 153532    Answers: 0   Comments: 0

sin(sin(sin(x^(2πx) −1))) = cos(cos(cos(x^(2ex) +1))) x = ?

$$\: \\ $$$$\:\mathrm{sin}\left(\mathrm{sin}\left(\mathrm{sin}\left({x}^{\mathrm{2}\pi{x}} −\mathrm{1}\right)\right)\right)\:=\:\mathrm{cos}\left(\mathrm{cos}\left(\mathrm{cos}\left({x}^{\mathrm{2}{ex}} +\mathrm{1}\right)\right)\right)\: \\ $$$$\:{x}\:=\:? \\ $$$$\: \\ $$

Question Number 153518    Answers: 2   Comments: 0

Show whether Σ_(n = 1) ^∞ ((x^2 /(3 + n^2 x^2 ))) is uniformly convegence for real value of x.

$$\mathrm{Show}\:\mathrm{whether}\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{3}\:\:\:\:+\:\:\:\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} }\right)\:\:\:\:\:\mathrm{is}\:\mathrm{uniformly}\:\mathrm{convegence}\:\mathrm{for}\:\mathrm{real} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$

Question Number 153517    Answers: 0   Comments: 2

L=lim_(x→1) (((√(2019x−2018))−1)/( (x^(2019) )^(1/(2018)) −1)) then 2×L =?

$$\:\:{L}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt{\mathrm{2019}{x}−\mathrm{2018}}−\mathrm{1}}{\:\sqrt[{\mathrm{2018}}]{{x}^{\mathrm{2019}} }−\mathrm{1}} \\ $$$$\:{then}\:\mathrm{2}×{L}\:=? \\ $$

Question Number 153513    Answers: 2   Comments: 0

((x/5) + (y/3))((5/x) + (3/y)) = 139, ∀x,y ∈ R_(>0) find maximum and minimum of ((x + y)/( (√(xy))))

$$\left(\frac{{x}}{\mathrm{5}}\:+\:\frac{{y}}{\mathrm{3}}\right)\left(\frac{\mathrm{5}}{{x}}\:+\:\frac{\mathrm{3}}{{y}}\right)\:=\:\mathrm{139},\:\forall{x},{y}\:\in\:\mathbb{R}_{>\mathrm{0}} \\ $$$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{of}\:\:\frac{{x}\:+\:{y}}{\:\sqrt{{xy}}} \\ $$

Question Number 153512    Answers: 1   Comments: 0

a,b,c ∈ Z ∣a−b∣^3 + ∣b−c∣^3 = 1 Find the value of ∣a−b∣ + ∣b−c∣ + ∣c−a∣

$${a},{b},{c}\:\:\in\:\:\mathbb{Z} \\ $$$$\mid{a}−{b}\mid^{\mathrm{3}} \:+\:\mid{b}−{c}\mid^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$${Find}\:\:{the}\:\:{value}\:\:{of} \\ $$$$\:\:\:\:\:\:\mid{a}−{b}\mid\:+\:\mid{b}−{c}\mid\:+\:\mid{c}−{a}\mid \\ $$

Question Number 153508    Answers: 1   Comments: 0

Question Number 153500    Answers: 0   Comments: 0

Evaluate the line integral space if f(r)=Zi+Xj+Yk and C is a helix given by C: r(t)=(cost,sint,−3t) 0≤t≤2π

$${Evaluate}\:{the}\:{line}\:{integral}\:{space} \\ $$$${if}\:{f}\left({r}\right)={Zi}+{Xj}+{Yk}\:{and}\:{C}\:{is}\:{a}\:{helix} \\ $$$${given}\:{by}\:{C}:\:{r}\left({t}\right)=\left({cost},{sint},−\mathrm{3}{t}\right)\:\:\mathrm{0}\leqslant{t}\leqslant\mathrm{2}\pi \\ $$

Question Number 153488    Answers: 0   Comments: 2

my notifications dont work. am i the only one with this problem? how can i contact tinku tara and do they still update the app?

$$\:\mathrm{my}\:\mathrm{notifications}\:\mathrm{dont}\:\mathrm{work}. \\ $$$$\:\mathrm{am}\:\mathrm{i}\:\mathrm{the}\:\mathrm{only}\:\mathrm{one}\:\mathrm{with}\:\mathrm{this}\:\mathrm{problem}?\: \\ $$$$\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{contact}\:\mathrm{tinku}\:\mathrm{tara}\:\mathrm{and}\: \\ $$$$\:\mathrm{do}\:\mathrm{they}\:\mathrm{still}\:\mathrm{update}\:\mathrm{the}\:\mathrm{app}?\: \\ $$

Question Number 153486    Answers: 1   Comments: 0

Question Number 153483    Answers: 2   Comments: 6

Question Number 153479    Answers: 1   Comments: 0

Find area of region that satisfy ∣x−2∣ + ∣y+3∣ < 3

$${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$

Question Number 153478    Answers: 0   Comments: 0

2016−2x = ∣x−a∣+∣x−b∣+∣x−c∣ has only one solution . a<b<c a,b,c ∈ Z Find the lowest value of c.

$$\mathrm{2016}−\mathrm{2}{x}\:=\:\mid{x}−{a}\mid+\mid{x}−{b}\mid+\mid{x}−{c}\mid\:\:\:{has}\:\:{only}\:\:{one}\:\:{solution}\:. \\ $$$${a}<{b}<{c}\:\: \\ $$$${a},{b},{c}\:\in\:\mathbb{Z} \\ $$$${Find}\:\:{the}\:\:{lowest}\:\:{value}\:\:{of}\:\:{c}. \\ $$

Question Number 153505    Answers: 1   Comments: 1

Question Number 153472    Answers: 0   Comments: 0

Question Number 176888    Answers: 1   Comments: 3

Question Number 153458    Answers: 0   Comments: 1

Given a set consisting of 22 integer A={±a_1 ,±a_2 ,...,±a_(11) }. Show that exist subset of S with properties (1) for every i=1,2,3,...,11 have least one between a_i or −a_i element of S (2)the sum all possible numbers in S divisible by 2015

$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$

Question Number 153457    Answers: 2   Comments: 0

Question Number 153450    Answers: 1   Comments: 0

{ (((x+1)^2 =x+y+2)),(((y+1)^2 =y+z+2)),(((z+1)^2 =z+x+2)) :}

$$\begin{cases}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} ={x}+{y}+\mathrm{2}}\\{\left({y}+\mathrm{1}\right)^{\mathrm{2}} ={y}+{z}+\mathrm{2}}\\{\left({z}+\mathrm{1}\right)^{\mathrm{2}} ={z}+{x}+\mathrm{2}}\end{cases} \\ $$

Question Number 153449    Answers: 0   Comments: 0

lim_(x→0) ((((1+tan^(−1) (3x)))^(1/3) −((1−sin^(−1) (3x)))^(1/3) )/( (√(1−sin^(−1) (2x)))−(√(1+tan^(−1) (2x))))) =?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)}}{\:\sqrt{\mathrm{1}−\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}−\sqrt{\mathrm{1}+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)}}\:=? \\ $$

Question Number 153447    Answers: 2   Comments: 1

Question Number 153446    Answers: 1   Comments: 1

L^(−1) {(s/(s^2 - 12s + 40))} = ?

$$\mathrm{L}^{−\mathrm{1}} \left\{\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}} \:-\:\mathrm{12s}\:+\:\mathrm{40}}\right\}\:=\:? \\ $$

Question Number 153438    Answers: 0   Comments: 2

Question Number 153435    Answers: 0   Comments: 0

  Pg 657      Pg 658      Pg 659      Pg 660      Pg 661      Pg 662      Pg 663      Pg 664      Pg 665      Pg 666   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com