Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 661
Question Number 143740 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}2n}−\left(\mathrm{2n}+\mathrm{1}\right)\mathrm{ln}\left(\mathrm{n}\right)+\underset{\mathrm{p}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{ln}\left(\mathrm{1}+\mathrm{p}^{\mathrm{2}} \right)=\:\mathrm{ln}\left({e}^{\pi} −{e}^{−\pi} \right) \\ $$
Question Number 143735 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....{Calculus}..... \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\:\int_{−\infty} ^{\:\infty} \frac{{dx}}{{x}^{\:\mathrm{2}} \:{e}^{\frac{{a}}{{x}^{\mathrm{2}} }} }\:=?\:\:\left({a}\:>\:\mathrm{0}\:\right) \\ $$
Question Number 143731 Answers: 1 Comments: 0
Question Number 143730 Answers: 2 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{sin}\left(\mathrm{sin}\left(\mathrm{1}−\mathrm{cosx}\right)\right)−\mathrm{1}+\mathrm{cos}\left(\mathrm{x}−\mathrm{sinx}\right)}{\mathrm{x}^{\mathrm{3}} } \\ $$
Question Number 143728 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{\infty} \frac{\left\{{x}\right\}}{{x}^{\mathrm{3}} }{dx}=\mathrm{1}−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$
Question Number 143726 Answers: 1 Comments: 2
Question Number 143718 Answers: 0 Comments: 5
Question Number 143709 Answers: 1 Comments: 2
Question Number 143708 Answers: 3 Comments: 0
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{3}}{\mathrm{4}^{} }+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{3}^{\mathrm{3}} }{\mathrm{4}^{\mathrm{3}} }+\frac{\mathrm{3}^{\mathrm{4}} }{\mathrm{4}^{\mathrm{4}} }+\frac{\mathrm{3}^{\mathrm{5}} }{\mathrm{4}^{\mathrm{5}} }+\ldots=\mathrm{3} \\ $$
Question Number 143706 Answers: 1 Comments: 0
$$\mathrm{2}^{\mathrm{x}} +\mathrm{9}^{\mathrm{y}} =\mathrm{x}^{\mathrm{2}} +\mathrm{9xy}+\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\mathrm{x},\mathrm{y}\in\mathbb{N} \\ $$
Question Number 143702 Answers: 2 Comments: 0
$${n}\:\in\:\mathrm{IN}. \\ $$$${I}_{{n}} \:=\:\int_{\mathrm{1}} ^{\:\mathrm{e}} {x}^{{n}+\mathrm{1}} {lnx}\:{dx}. \\ $$$$\mathrm{1}.\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\left(\boldsymbol{{I}}_{\boldsymbol{{n}}} \right)\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{positive}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{increasing}}. \\ $$$$\mathrm{2}.\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{part}}−\boldsymbol{\mathrm{by}}−\boldsymbol{\mathrm{part}}\:\boldsymbol{\mathrm{integration}},\:\boldsymbol{\mathrm{calculate}}\:\boldsymbol{{I}}_{\boldsymbol{{n}}} . \\ $$
Question Number 143701 Answers: 1 Comments: 1
Question Number 143698 Answers: 0 Comments: 5
$$\:{My}\:{first}\:{Contribution}\:{to}\:{this}\:{forum}.\: \\ $$$${One}\:{year}\:{later}\: \\ $$$${Q}\:\mathrm{98831} \\ $$
Question Number 143688 Answers: 0 Comments: 2
Question Number 143684 Answers: 1 Comments: 0
$$\mathrm{x}^{\mathrm{3}} +\mathrm{x}−\mathrm{1}=^{\mathrm{3}} \sqrt{\mathrm{2x}^{\mathrm{3}} +\mathrm{11}}+\sqrt{\mathrm{5x}^{\mathrm{2}} +\mathrm{16}} \\ $$$$\mathrm{Find}\:\mathrm{x}\in\mathbb{R} \\ $$
Question Number 143680 Answers: 1 Comments: 1
$$\mathrm{tan}\:\mathrm{76}=\mathrm{4} \\ $$$$\mathrm{sin}\:^{\mathrm{2}} \mathrm{14}=? \\ $$
Question Number 143677 Answers: 3 Comments: 0
Question Number 143671 Answers: 0 Comments: 2
Question Number 143666 Answers: 2 Comments: 1
Question Number 143653 Answers: 1 Comments: 0
Question Number 143650 Answers: 3 Comments: 0
$${If}\:\:{the}\:{function}\:{f}\:{and}\:{g}\:{are}\:{defined} \\ $$$${on}\:{the}\:{set}\:{of}\:{real}\:{numbers},{are}\:{such} \\ $$$${that}\:\boldsymbol{{gof}}\left(\boldsymbol{{x}}\right)=\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{5}}{\mathrm{3}\boldsymbol{{x}}+\mathrm{7}}\:\:\:{and}\: \\ $$$$\boldsymbol{{g}}\left(\boldsymbol{{x}}\right)=\frac{\mathrm{3}\boldsymbol{{x}}+\mathrm{2}}{\boldsymbol{{x}}−\mathrm{5}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{an}}\:\boldsymbol{\mathrm{expression}}\:\boldsymbol{\mathrm{for}}\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$
Question Number 143889 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:{A}\:\:{Challanging}\:\:{Integral}: \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{log}\left({x}\right).{log}\left(\mathrm{1}+{x}\right)}{\mathrm{1}−{x}}{dx} \\ $$$$ \\ $$$$ \\ $$
Question Number 143641 Answers: 1 Comments: 0
$$\mathrm{sin}\:\mathrm{160}−\mathrm{sin}\:\mathrm{20}=? \\ $$
Question Number 143638 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:......{Calculus}.... \\ $$$$\boldsymbol{\phi}:\overset{?} {=}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right){ln}\left({x}\right)\left({ln}\left(\frac{\mathrm{1}−{x}}{{x}}\right)\right)}{{x}}\:{dx} \\ $$$$\:\:{m}.{n}.... \\ $$$$ \\ $$
Question Number 143630 Answers: 1 Comments: 1
$${prove}\:{that}\:{if}\:{a}\:{and}\:{c}\:{are}\:{odd}\:{integers} \\ $$$${then}\:{ab}+{bc}\:{is}\:{even}\:{for}\:{every}\:{integer}\:{b}? \\ $$
Question Number 143628 Answers: 1 Comments: 0
$$\int_{{x}} ^{\propto} {t}^{\alpha−\mathrm{1}} {e}^{{it}} {dt}=?? \\ $$
Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664 Pg 665
Terms of Service
Privacy Policy
Contact: info@tinkutara.com