Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 661
Question Number 146100 Answers: 1 Comments: 1
Question Number 146096 Answers: 1 Comments: 0
Question Number 146090 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sinh}\left(\mathrm{at}\right)\mathrm{sinh}\left(\mathrm{bt}\right)}{\mathrm{sinh}\left(\mathrm{ct}\right)\mathrm{e}^{\mathrm{tz}} }\mathrm{dt}= \\ $$$$\frac{\mathrm{ab}}{\mathrm{c}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\mathrm{K}}}\frac{−\mathrm{4k}^{\mathrm{2}} \left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} \right)\left(\mathrm{k}^{\mathrm{2}} \mathrm{c}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}{\left(\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{z}^{\mathrm{2}} +\left(\mathrm{2k}^{\mathrm{2}} +\mathrm{2k}+\mathrm{1}\right)\mathrm{c}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \right)}\right)} \\ $$
Question Number 146091 Answers: 0 Comments: 0
Question Number 146087 Answers: 1 Comments: 0
$$\left.\mathrm{1}\right)\mathrm{find}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{n}} \:\mathrm{e}^{−\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\ $$
Question Number 146085 Answers: 0 Comments: 1
$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{x}−\sqrt{\mathrm{x}+\mathrm{2y}} \\ $$$$\left.\mathrm{1}\right)\mathrm{condition}\:\mathrm{on}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{to}\:\mathrm{have}\:\mathrm{f}\:\mathrm{symetric} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:,\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:,\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{x}\partial\mathrm{y}}\:,\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial\mathrm{y}\partial\mathrm{x}} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{find}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{x}}\:\mathrm{and}\:\frac{\partial^{\mathrm{2}} \mathrm{f}}{\partial^{\mathrm{2}} \mathrm{y}} \\ $$
Question Number 146083 Answers: 1 Comments: 0
$$\mathrm{F}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{n}} \:−\mathrm{e}^{\mathrm{in}\alpha} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{roots}\:\mathrm{of}\:\mathrm{F}\left(\mathrm{x}\right)? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{factorize}\:\mathrm{F}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$
Question Number 146082 Answers: 0 Comments: 0
$$\mathrm{p}\left(\mathrm{x}\right)=\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} −\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{n}} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{roots}\:\mathrm{of}\:\mathrm{p}\left(\mathrm{x}\right)? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{factorize}\:\mathrm{p}\left(\mathrm{x}\right)\:\mathrm{inside}\:\mathrm{C}\left[\mathrm{x}\right] \\ $$
Question Number 146076 Answers: 1 Comments: 0
$${if}\:{f}\left({x}\right)=\int\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}\right){dx}\:{and}\:{f}\left(\mathrm{2}\right)=\mathrm{9}\:{then} \\ $$$${f}\left(−\mathrm{2}\right)=\:? \\ $$
Question Number 146073 Answers: 0 Comments: 0
$${Let}\:{K}\:{be}\:{nonempty}\:\:{corps}\:,\:{K}^{\ast} ={K}−\left\{\mathrm{0}_{{K}} \right\} \\ $$$${Prove}\:{that} \\ $$$$\left.\mathrm{1}\right)\:\underset{{x}\in{K}^{\ast} } {\prod}{x}\:=\:−\mathrm{1} \\ $$$$\left.\mathrm{2}\right){Deduce}\:{that}\: \\ $$$$\:\:{p}\:{is}\:{prime}\:\Leftrightarrow\:\left({p}−\mathrm{1}\right)!\equiv−\mathrm{1}\left[{p}\right] \\ $$
Question Number 146072 Answers: 0 Comments: 0
$${Let}\:{F}_{{n}} =\mathrm{2}^{\mathrm{2}^{{n}} } +\mathrm{1}\:{the}\:{fermat}\:{number} \\ $$$${Prove}\:{that} \\ $$$$\:{F}_{{n}} \:{is}\:{prime}\:\Leftrightarrow\:\mathrm{3}^{\frac{{F}_{{n}} −\mathrm{1}}{\mathrm{2}}} \equiv\mathrm{1}\left[{F}_{{n}} \right] \\ $$
Question Number 146067 Answers: 1 Comments: 0
$${transform}\:{the}\:{cartesian}\:{inyegral}\: \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\:\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} {\int}}{e}^{−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)} \:{dy}\:{dx}\:{into}\:{polar}\:{integral}\: \\ $$$${and}\:{evaluate}\:{it}. \\ $$
Question Number 146063 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:{if}\:\:{g}\left({x}\right)=\frac{{x}^{\:\mathrm{2}} −{x}}{\mathrm{2}{x}−\mathrm{1}}\:\:\:,\:{D}_{{g}} =\:\left[\mathrm{1}\:,\:\infty\right) \\ $$$$\:\:\:\:,\:{lim}_{{x}\rightarrow\infty} \frac{{g}^{\:−\mathrm{1}} \left({x}\right)}{{ax}\:+\:{b}}\:=\:{b}−{a}\:\:\left({a}\:<\mathrm{0}\:\right) \\ $$$$\:\:{then}\:{find}\:\:{the}\:{value}\:{of}\:{Max}\:\left({b}\:\right) \\ $$$$\:\: \\ $$$$\:\:{D}_{\:{g}} \:=\:{Domain}\: \\ $$
Question Number 146062 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:{find}\:\:{values}\:\:{a}\:,\:{b}\:,\:{c}\:\:{such}\:{that}: \\ $$$$\:\:\:\:−\mathrm{1}\leqslant\:{ax}\:^{\mathrm{2}} +{bx}\:+{c}\:\leqslant\:\mathrm{1} \\ $$$$\:\:\:\:\:\:{and}\:\:\frac{\mathrm{6}{b}^{\:\mathrm{2}} +\:\mathrm{8}\:{a}^{\:\mathrm{2}} }{\mathrm{3}}\:{is}\:{Max}... \\ $$
Question Number 146061 Answers: 0 Comments: 0
Question Number 146057 Answers: 1 Comments: 0
Question Number 146054 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\:\infty} {e}^{\:−{x}} \:.\:\mathrm{J}_{\frac{\mathrm{1}}{\mathrm{2}}} \:\left({x}\:\right)\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{J}_{{v}\:} \:\left({x}\:\right)\:=\:{x}^{\:{v}} \:\underset{{n}=\mathrm{0}} {\overset{\:\infty} {\sum}}\frac{\left(−\:\mathrm{1}\:\right)^{\:{n}} \:{x}^{\:\mathrm{2}{n}} }{\mathrm{2}^{\:{n}\:+\:{v}} \:{n}\:!\:\Gamma\:\left(\:{n}\:+\:{v}\:+\mathrm{1}\:\right)} \\ $$$$\:\:\:.... \\ $$
Question Number 146048 Answers: 1 Comments: 0
$${in}\:{a}\:{triangle}\:{ABC}\:\:{we}\:{have}\: \\ $$$$\begin{cases}{\mathrm{3}{sin}\hat {{A}}+\mathrm{4}{cos}\hat {{B}}=\mathrm{6}}\\{\mathrm{4}{sin}\hat {{B}}+\mathrm{3}{cos}\hat {{A}}=\mathrm{1}}\end{cases} \\ $$$${find}\:\hat {{C}} \\ $$$$ \\ $$
Question Number 146046 Answers: 1 Comments: 0
$${f}\left({x}\right)\:=\:{x}^{\boldsymbol{{sin}}\left(\boldsymbol{{x}}\right)} \:\Rightarrow\:{f}\:^{'} \left({x}\right)\:=\:? \\ $$
Question Number 146043 Answers: 2 Comments: 0
Question Number 146044 Answers: 1 Comments: 0
$${Simplify}: \\ $$$$\frac{{sin}^{\mathrm{3}} \alpha}{\mathrm{1}-{cos}\alpha}\:+\:\frac{{cos}^{\mathrm{3}} \alpha}{{sin}\alpha+\mathrm{1}}\:=\:? \\ $$
Question Number 146035 Answers: 2 Comments: 0
$${help}\:{me}\:{please} \\ $$$$\int\frac{{ln}\left({x}+\mathrm{1}\right)}{{x}}{dx}=?? \\ $$$$ \\ $$
Question Number 146030 Answers: 0 Comments: 1
Question Number 146026 Answers: 2 Comments: 3
Question Number 146017 Answers: 1 Comments: 0
Question Number 146013 Answers: 0 Comments: 0
Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664 Pg 665
Terms of Service
Privacy Policy
Contact: info@tinkutara.com