Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 660
Question Number 146193 Answers: 2 Comments: 0
$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{y}^{'} \:+\:\mathrm{y}=\mathrm{xe}^{−\mathrm{x}} \\ $$
Question Number 146183 Answers: 1 Comments: 1
Question Number 146181 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \:\left({n}+\mathrm{1}\:\right)\:\left(\:{n}\:+\:\mathrm{2}\:\right)}\:=? \\ $$
Question Number 146180 Answers: 0 Comments: 0
$$\mathrm{theorem}:\:\:\:\mathrm{statement}:\:\mathrm{The}\:\mathrm{right}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{congruent}. \\ $$
Question Number 146176 Answers: 0 Comments: 0
Question Number 146174 Answers: 0 Comments: 0
$${calculer}\:{lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right)\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{{x}} } \\ $$
Question Number 146173 Answers: 0 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\mathrm{w}\:=\:\frac{\mathrm{N}!}{\mathrm{n}_{\mathrm{1}} !\:\mathrm{n}_{\mathrm{2}} !} \\ $$
Question Number 146172 Answers: 0 Comments: 0
$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{book}\:\mathrm{where}\:\mathrm{the}\:\mathrm{topic}\:``\:\boldsymbol{\mathrm{inverse}} \\ $$$$\boldsymbol{\mathrm{trigonometric}}\:\boldsymbol{\mathrm{function}}''\:\mathrm{has}\:\mathrm{given}\:\mathrm{in}\:\mathrm{full}\: \\ $$$$\mathrm{details}\:? \\ $$
Question Number 146170 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right)\mathrm{tan}\:\left(\frac{\pi}{{x}}\right)=? \\ $$
Question Number 146164 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{calulate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\frac{{n}}{\mathrm{2}}\:} }{\:\mathrm{2}^{\:{n}} }\:=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:.......{m}.{n}. \\ $$
Question Number 146158 Answers: 1 Comments: 1
Question Number 146157 Answers: 3 Comments: 0
Question Number 146156 Answers: 0 Comments: 0
Question Number 146155 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \:\left({Arcsin}\left({x}\right)\right)^{\:{n}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:{x}\:\in\:?\: \\ $$$$\:\:\:\:\:\:{Q}\::\:{mr}\:{liberty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 146154 Answers: 0 Comments: 0
Question Number 146146 Answers: 0 Comments: 1
$$ \\ $$to admin tinku tara. why can't i post in hebrew ?
Question Number 146141 Answers: 0 Comments: 4
$$ \\ $$An incident ray is reflected normally by a plane mirror onto a screen where it forms a bright spot. The mirror and screen are parallel and 1m apart. If the mirror is rotated through 5°, calculate the displacement of the spot
Question Number 146150 Answers: 0 Comments: 0
$$\:\:\:\left(\boldsymbol{\mathrm{L}}\mathrm{evel}\:-\:\mathrm{2}\right)\:\:\:\:\:\mathrm{10}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{maths}}\:\boldsymbol{\mathrm{assignment}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{polynomials}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{PP}}\:\boldsymbol{\mathrm{sir}} \\ $$$$\mathrm{Defind}\:\mathrm{upwards}\:\mathrm{and}\:\mathrm{downwards}\:\mathrm{parabolas}. \\ $$$$ \\ $$$$ \\ $$
Question Number 146147 Answers: 2 Comments: 0
$$\:\Upsilon\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=? \\ $$
Question Number 146119 Answers: 3 Comments: 2
$$\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{4}} }}{\mathrm{3}{x}}\:=?}\\{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{7}} }}\:=?}\\\hline\end{array} \\ $$
Question Number 146110 Answers: 2 Comments: 0
$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$
Question Number 146108 Answers: 0 Comments: 0
$$\:{Solve}\:\:{in}\:\mathbb{Z}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right)\:{XP}\:'\:\equiv\:−\mathrm{1}\:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{X}^{\mathrm{3}} {P}\:−{P}\:'\:\equiv\:\mathrm{1}−{X}^{\mathrm{2}} \:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{P}\:^{\mathrm{2}} −{X}^{\mathrm{3}} {P}−{X}^{\mathrm{2}} \:\:\equiv\:\mathrm{0}\:{mod}\left({X}^{\mathrm{2}} +\mathrm{2}\right) \\ $$
Question Number 151714 Answers: 0 Comments: 2
Question Number 146131 Answers: 1 Comments: 1
Question Number 146106 Answers: 2 Comments: 0
Question Number 146102 Answers: 1 Comments: 0
$${prove}\:{by}\:{mathmatical}\:{indiction}\: \\ $$$$\mathrm{5}+\mathrm{7}+\mathrm{9}+.....+\left(\mathrm{4}{n}+\mathrm{1}\right)=\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n} \\ $$
Pg 655 Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664
Terms of Service
Privacy Policy
Contact: info@tinkutara.com