Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 660
Question Number 143899 Answers: 3 Comments: 0
Question Number 143898 Answers: 0 Comments: 0
Question Number 143892 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{cos}^{\mathrm{4}} \left(\mathrm{2x}\right)}{\left(\mathrm{x}^{\mathrm{4}} \:−\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 143890 Answers: 2 Comments: 0
$${if}\:{a}+{b}+{c}=\pi\:\:\: \\ $$$$\:{tanA}+{tanB}+{tanC}\:={tanA}.{tanB}.{tanC} \\ $$$$\mathrm{FAILED}\:\mathrm{TO}\:\mathrm{CALCULATE} \\ $$
Question Number 143897 Answers: 1 Comments: 0
Question Number 143878 Answers: 3 Comments: 0
$$\mathrm{y}'''=\mathrm{2xy}'' \\ $$
Question Number 143875 Answers: 0 Comments: 1
Question Number 143874 Answers: 0 Comments: 0
$$\mathrm{y}''−\mathrm{x}×\mathrm{y}'''+\mathrm{y}'''^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 143863 Answers: 0 Comments: 1
Question Number 143860 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}\:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \mathrm{log}\left(\mathrm{1}+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$
Question Number 143858 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{A}\geqslant\mathrm{0},\:\mathrm{B}\geqslant\mathrm{0},\:\mathrm{A}+\mathrm{B}=\frac{\Pi}{\mathrm{3}}\:\mathrm{then} \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\: \\ $$$$\mathrm{of}\:\mathrm{tan}\:\mathrm{A}.\mathrm{tan}\:\mathrm{B}\: \\ $$
Question Number 143857 Answers: 0 Comments: 0
$$\mathrm{if}\:\mathrm{cos}^{\mathrm{4}} \theta\mathrm{sec}\:^{\mathrm{2}} \alpha,\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{sin}^{\mathrm{4}} \theta\mathrm{cosec}^{\mathrm{2}} \alpha\: \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{A}.\mathrm{P}.\:\mathrm{then} \\ $$$$\:\mathrm{cos}^{\mathrm{8}} \theta\mathrm{sec}^{\mathrm{6}} \alpha,\:\frac{\mathrm{1}}{\mathrm{2}},\:\mathrm{sin}^{\mathrm{8}} \theta\mathrm{cosec}^{\mathrm{6}} \alpha \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{which}\:\mathrm{progression}? \\ $$
Question Number 143868 Answers: 2 Comments: 1
Question Number 143850 Answers: 0 Comments: 0
Question Number 143846 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\:\frac{\left(\mathrm{0}!\right)^{\mathrm{2}} }{\mathrm{1}!}\:+\frac{\left(\mathrm{1}!\right)^{\mathrm{2}} }{\mathrm{3}!}\:+\frac{\left(\mathrm{2}!\right)^{\mathrm{2}} }{\mathrm{5}!}\:+..... \\ $$
Question Number 143832 Answers: 3 Comments: 0
$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\left(\frac{\mathrm{56}}{\mathrm{13}}\right)^{\mathrm{2}} \:{and}\:\:{x}\:+\:\frac{\mathrm{5}{y}}{\mathrm{12}}\:=\:\frac{\mathrm{56}}{\mathrm{12}} \\ $$$${find}\:\:{x}+{y}=? \\ $$
Question Number 143856 Answers: 0 Comments: 2
$$\mathrm{if}\:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\mathrm{cos}^{\mathrm{2}} \mathrm{y}}+\frac{\mathrm{sin}^{\mathrm{4}} \mathrm{x}}{\mathrm{sin}^{\mathrm{2}} \mathrm{y}}=\mathrm{1then}\:\mathrm{find}\: \\ $$$$\:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{y}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}+\frac{\mathrm{sin}^{\mathrm{4}} \mathrm{y}}{\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$
Question Number 143822 Answers: 0 Comments: 0
$$\:{x}^{\mathrm{4}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${let}\:\:{x}=\frac{{t}}{{s}} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +{as}^{\mathrm{2}} {t}^{\mathrm{2}} +{bs}^{\mathrm{3}} {t}+{cs}^{\mathrm{4}} =\mathrm{0} \\ $$$${let}\:{t}={p}+{h}\:\:\Rightarrow \\ $$$${p}^{\mathrm{4}} +\mathrm{4}{hp}^{\mathrm{3}} +\mathrm{6}{h}^{\mathrm{2}} {p}^{\mathrm{2}} +\mathrm{4}{h}^{\mathrm{3}} {p}+{h}^{\mathrm{4}} \\ $$$$+{as}^{\mathrm{2}} \left({p}^{\mathrm{2}} +\mathrm{2}{hp}+{h}^{\mathrm{2}} \right) \\ $$$$+{bs}^{\mathrm{3}} \left({p}+{h}\right)+{cs}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow \\ $$$${p}^{\mathrm{4}} +\mathrm{4}{hp}^{\mathrm{3}} +\left(\mathrm{6}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} \right){p}^{\mathrm{2}} \\ $$$$+\left(\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ahs}^{\mathrm{2}} +{bs}^{\mathrm{3}} \right){p} \\ $$$$+\left({h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \right)=\mathrm{0} \\ $$$${let}\:\:\left(\sqrt{\mathrm{2}}{p}^{\mathrm{2}} +{Ap}+{B}\right)^{\mathrm{2}} =\left({p}^{\mathrm{2}} +{mp}+{k}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}\sqrt{\mathrm{2}}{A}−\mathrm{2}{m}=\mathrm{4}{h} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}{B}+{A}^{\mathrm{2}} −{m}^{\mathrm{2}} −\mathrm{2}{k} \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{6}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} \\ $$$$\mathrm{2}{AB}−\mathrm{2}{mk}=\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ah}+{bs}^{\mathrm{3}} \\ $$$${B}^{\mathrm{2}} −{k}^{\mathrm{2}} ={h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \\ $$$${let}\:\:{m}=\mathrm{0}\:\:\Rightarrow \\ $$$${A}=\sqrt{\mathrm{2}}{h} \\ $$$$\mathrm{2}\sqrt{\mathrm{2}}{B}=\mathrm{4}{h}^{\mathrm{2}} +{as}^{\mathrm{2}} +\mathrm{2}{k} \\ $$$$\mathrm{4}{h}^{\mathrm{3}} +{ahs}^{\mathrm{2}} +\mathrm{2}{hk}=\mathrm{4}{h}^{\mathrm{3}} +\mathrm{2}{ah}+{bs}^{\mathrm{3}} \\ $$$$\Rightarrow\:\left({as}^{\mathrm{2}} +\mathrm{2}{k}−\mathrm{2}{a}\right){h}={bs}^{\mathrm{3}} \\ $$$$\left(\mathrm{4}{h}^{\mathrm{3}} +{as}^{\mathrm{2}} +\mathrm{2}{k}\right)^{\mathrm{2}} \\ $$$$\:\:−\mathrm{8}{k}^{\mathrm{2}} =\mathrm{8}\left({h}^{\mathrm{4}} +{as}^{\mathrm{2}} {h}^{\mathrm{2}} +{bs}^{\mathrm{3}} {h}+{cs}^{\mathrm{4}} \right) \\ $$$${let}\:\:{k}={a} \\ $$$$\Rightarrow\:\:{ah}={bs} \\ $$$$\Rightarrow\:\left(\frac{\mathrm{4}{b}^{\mathrm{2}} {h}}{{a}^{\mathrm{2}} }+{a}+\frac{\mathrm{2}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)^{\mathrm{2}} −\frac{\mathrm{8}{b}^{\mathrm{4}} {h}^{\mathrm{4}} }{{a}^{\mathrm{2}} } \\ $$$$\:\:=\mathrm{8}\left(\frac{{b}^{\mathrm{4}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{2}{b}^{\mathrm{2}} }{{a}}+{c}\right) \\ $$$$\Rightarrow\:\frac{\mathrm{16}{b}^{\mathrm{4}} {h}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{a}^{\mathrm{6}} {h}^{\mathrm{4}} }{{b}^{\mathrm{4}} } \\ $$$$+\frac{\mathrm{8}{b}^{\mathrm{2}} {h}}{{a}}+\mathrm{32}{ah}^{\mathrm{3}} +\frac{\mathrm{4}{a}^{\mathrm{4}} {h}^{\mathrm{2}} }{{b}^{\mathrm{2}} } \\ $$$$\:\:−\frac{\mathrm{8}{b}^{\mathrm{4}} {h}^{\mathrm{4}} }{{a}^{\mathrm{2}} }=\lambda \\ $$$$\Rightarrow\:\left(\frac{\mathrm{4}{a}^{\mathrm{6}} }{{b}^{\mathrm{4}} }−\frac{\mathrm{8}{b}^{\mathrm{4}} }{{a}^{\mathrm{2}} }\right){h}^{\mathrm{4}} +\mathrm{32}{ah}^{\mathrm{3}} \\ $$$$\:\:\:+\left(\frac{\mathrm{16}{b}^{\mathrm{4}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{a}^{\mathrm{4}} }{{b}^{\mathrm{2}} }\right){h}^{\mathrm{2}} +\frac{\mathrm{8}{b}^{\mathrm{2}} {h}}{{a}}−\lambda=\mathrm{0} \\ $$$$... \\ $$
Question Number 144084 Answers: 1 Comments: 0
$${if}\:\:{a}+\frac{\mathrm{1}}{{a}}=−\mathrm{1} \\ $$$$\:{a}^{\mathrm{1234567891011}} +\frac{\mathrm{1}}{{a}^{\mathrm{1110987654321}} }=?? \\ $$$$ \\ $$
Question Number 144086 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{sin}\:\mathrm{t}\:+\:\mathrm{cos}\:\:\mathrm{t}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{cosec}\:\mathrm{t}+\mathrm{sec}\:\mathrm{t}\:=? \\ $$
Question Number 144085 Answers: 1 Comments: 1
Question Number 143814 Answers: 1 Comments: 0
$$\forall{a};{b};{c}\in\mathbb{R}\:,\:{find}\:{all}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:,\:{such}\:{that} \\ $$$${f}\left({a}\right){f}\left({bc}\right)+\mathrm{9}\leqslant{f}\left({ab}\right)+\mathrm{5}{f}\left({ac}\right) \\ $$
Question Number 143812 Answers: 1 Comments: 0
$$\:\mathrm{log}\:_{\mathrm{a}} \left(\mathrm{ax}\right).\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{ax}\right)=\mathrm{log}\:_{\mathrm{a}^{\mathrm{2}} } \left(\frac{\mathrm{1}}{\mathrm{a}}\right) \\ $$$$\:\mathrm{a}>\mathrm{0}\:,\:\mathrm{a}\neq\mathrm{1}\:.\:\mathrm{So}\:\mathrm{x}\:=\:? \\ $$
Question Number 143811 Answers: 1 Comments: 0
$$\:\begin{cases}{\mathrm{5}\left(\mathrm{log}\:_{\mathrm{y}} \left(\mathrm{x}\right)+\mathrm{log}\:_{\mathrm{x}} \left(\mathrm{y}\right)\right)=\mathrm{26}}\\{\:\mathrm{xy}\:=\:\mathrm{64}}\end{cases}\mathrm{then} \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{xy}\:=? \\ $$
Question Number 143810 Answers: 2 Comments: 0
$$\:\:\:\:\int\mathrm{cos}\left(\mathrm{cosx}\right)\mathrm{dx}=? \\ $$
Question Number 144132 Answers: 2 Comments: 0
Pg 655 Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661 Pg 662 Pg 663 Pg 664
Terms of Service
Privacy Policy
Contact: info@tinkutara.com