Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 660

Question Number 146193    Answers: 2   Comments: 0

solve y^(′′) −y^′ + y=xe^(−x)

$$\mathrm{solve}\:\mathrm{y}^{''} \:−\mathrm{y}^{'} \:+\:\mathrm{y}=\mathrm{xe}^{−\mathrm{x}} \\ $$

Question Number 146183    Answers: 1   Comments: 1

Question Number 146181    Answers: 4   Comments: 0

Σ_(n=0) ^∞ (1/(2^( n) (n+1 ) ( n + 2 ))) =?

$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\:{n}} \:\left({n}+\mathrm{1}\:\right)\:\left(\:{n}\:+\:\mathrm{2}\:\right)}\:=? \\ $$

Question Number 146180    Answers: 0   Comments: 0

theorem: statement: The right bisectors of the sides of a triangle are congruent.

$$\mathrm{theorem}:\:\:\:\mathrm{statement}:\:\mathrm{The}\:\mathrm{right}\:\mathrm{bisectors}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{congruent}. \\ $$

Question Number 146176    Answers: 0   Comments: 0

Question Number 146174    Answers: 0   Comments: 0

calculer lim_(x→1) (x−1)Σ_(n≥0) (1/n^x )

$${calculer}\:{lim}_{{x}\rightarrow\mathrm{1}} \left({x}−\mathrm{1}\right)\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{{n}^{{x}} } \\ $$

Question Number 146173    Answers: 0   Comments: 0

prove that w = ((N!)/(n_1 ! n_2 !))

$$\mathrm{prove}\:\mathrm{that}\:\:\:\:\:\:\mathrm{w}\:=\:\frac{\mathrm{N}!}{\mathrm{n}_{\mathrm{1}} !\:\mathrm{n}_{\mathrm{2}} !} \\ $$

Question Number 146172    Answers: 0   Comments: 0

Is there any book where the topic “ inverse trigonometric function” has given in full details ?

$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{book}\:\mathrm{where}\:\mathrm{the}\:\mathrm{topic}\:``\:\boldsymbol{\mathrm{inverse}} \\ $$$$\boldsymbol{\mathrm{trigonometric}}\:\boldsymbol{\mathrm{function}}''\:\mathrm{has}\:\mathrm{given}\:\mathrm{in}\:\mathrm{full}\: \\ $$$$\mathrm{details}\:? \\ $$

Question Number 146170    Answers: 2   Comments: 0

lim_(x→2) (x^2 −4)tan ((π/x))=?

$$\:\:\:\:\:\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\left({x}^{\mathrm{2}} −\mathrm{4}\right)\mathrm{tan}\:\left(\frac{\pi}{{x}}\right)=? \\ $$

Question Number 146164    Answers: 1   Comments: 0

calulate :: S : = Σ_(n=1) ^∞ (( H_((n/2) ) )/( 2^( n) )) =? .......m.n.

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{calulate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\::\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\mathrm{H}_{\frac{{n}}{\mathrm{2}}\:} }{\:\mathrm{2}^{\:{n}} }\:=? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:.......{m}.{n}. \\ $$

Question Number 146158    Answers: 1   Comments: 1

Question Number 146157    Answers: 3   Comments: 0

Question Number 146156    Answers: 0   Comments: 0

Question Number 146155    Answers: 0   Comments: 2

lim_(n→∞) (Arcsin(x))^( n) =0 ∴ x ∈ ? Q : mr liberty

$$ \\ $$$$\:\:\:\:\:\:{lim}_{{n}\rightarrow\infty} \:\left({Arcsin}\left({x}\right)\right)^{\:{n}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\:\:{x}\:\in\:?\: \\ $$$$\:\:\:\:\:\:{Q}\::\:{mr}\:{liberty} \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 146154    Answers: 0   Comments: 0

Question Number 146146    Answers: 0   Comments: 1

to admin tinku tara. why can't i post in hebrew ?

$$ \\ $$to admin tinku tara. why can't i post in hebrew ?

Question Number 146141    Answers: 0   Comments: 4

An incident ray is reflected normally by a plane mirror onto a screen where it forms a bright spot. The mirror and screen are parallel and 1m apart. If the mirror is rotated through 5°, calculate the displacement of the spot

$$ \\ $$An incident ray is reflected normally by a plane mirror onto a screen where it forms a bright spot. The mirror and screen are parallel and 1m apart. If the mirror is rotated through 5°, calculate the displacement of the spot

Question Number 146150    Answers: 0   Comments: 0

(Level - 2) 10th maths assignment of polynomials by PP sir Defind upwards and downwards parabolas.

$$\:\:\:\left(\boldsymbol{\mathrm{L}}\mathrm{evel}\:-\:\mathrm{2}\right)\:\:\:\:\:\mathrm{10}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{maths}}\:\boldsymbol{\mathrm{assignment}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{polynomials}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{PP}}\:\boldsymbol{\mathrm{sir}} \\ $$$$\mathrm{Defind}\:\mathrm{upwards}\:\mathrm{and}\:\mathrm{downwards}\:\mathrm{parabolas}. \\ $$$$ \\ $$$$ \\ $$

Question Number 146147    Answers: 2   Comments: 0

Υ = ∫ (dx/(x^4 (√(x^2 −a^2 )))) =?

$$\:\Upsilon\:=\:\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} \:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}\:=? \\ $$

Question Number 146119    Answers: 3   Comments: 2

determinant (((lim_(x→0) ((√(5x^2 +4x^4 ))/(3x)) =?)),((lim_(x→0) (x^3 /( (√(x^6 +3x^7 )))) =?)))

$$\:\:\:\:\:\:\:\:\:\begin{array}{|c|c|}{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{x}^{\mathrm{4}} }}{\mathrm{3}{x}}\:=?}\\{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}^{\mathrm{3}} }{\:\sqrt{{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{7}} }}\:=?}\\\hline\end{array} \\ $$

Question Number 146110    Answers: 2   Comments: 0

∫((x+1)/(2x^2 +x+1))dx

$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Question Number 146108    Answers: 0   Comments: 0

Solve in Z[X] 1) XP ′ ≡ −1 mod(X^4 +1) 2) X^3 P −P ′ ≡ 1−X^2 mod(X^4 +1) 3) P^2 −X^3 P−X^2 ≡ 0 mod(X^2 +2)

$$\:{Solve}\:\:{in}\:\mathbb{Z}\left[{X}\right] \\ $$$$\left.\mathrm{1}\right)\:{XP}\:'\:\equiv\:−\mathrm{1}\:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{X}^{\mathrm{3}} {P}\:−{P}\:'\:\equiv\:\mathrm{1}−{X}^{\mathrm{2}} \:{mod}\left({X}^{\mathrm{4}} +\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{P}\:^{\mathrm{2}} −{X}^{\mathrm{3}} {P}−{X}^{\mathrm{2}} \:\:\equiv\:\mathrm{0}\:{mod}\left({X}^{\mathrm{2}} +\mathrm{2}\right) \\ $$

Question Number 151714    Answers: 0   Comments: 2

Question Number 146131    Answers: 1   Comments: 1

Question Number 146106    Answers: 2   Comments: 0

Question Number 146102    Answers: 1   Comments: 0

prove by mathmatical indiction 5+7+9+.....+(4n+1)=2n^2 +3n

$${prove}\:{by}\:{mathmatical}\:{indiction}\: \\ $$$$\mathrm{5}+\mathrm{7}+\mathrm{9}+.....+\left(\mathrm{4}{n}+\mathrm{1}\right)=\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n} \\ $$

  Pg 655      Pg 656      Pg 657      Pg 658      Pg 659      Pg 660      Pg 661      Pg 662      Pg 663      Pg 664   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com