Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 66
Question Number 218322 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\left({x}\right)}{\mathrm{sin}^{\mathrm{3}} \left({x}\right)+\mathrm{cos}^{\mathrm{3}} \left({x}\right)}\:{dx}. \\ $$
Question Number 218318 Answers: 1 Comments: 3
Question Number 218317 Answers: 1 Comments: 0
Question Number 218280 Answers: 1 Comments: 0
Question Number 218279 Answers: 2 Comments: 0
$$\mathrm{Evaluate}: \\ $$$$\:\:\:\:\:\frac{\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} } \\ $$$$\mathrm{Show}\:\mathrm{workings}\:\mathrm{please}. \\ $$
Question Number 218278 Answers: 0 Comments: 0
Question Number 218312 Answers: 1 Comments: 0
Question Number 218311 Answers: 1 Comments: 0
Question Number 218267 Answers: 1 Comments: 1
Question Number 218265 Answers: 1 Comments: 0
$$\mathrm{can}\:\mathrm{interpret}\:\mathrm{the}\:\mathrm{metric}\:\mathrm{Tensor}\:\boldsymbol{\mathrm{g}}_{\mu\nu} \:\mathrm{is}\: \\ $$$$\mathrm{kinda}\:\mathrm{distance}\:\mathrm{function}\:\mathrm{at}\:\mathrm{curved}\:\mathrm{Surface}\:?? \\ $$$$\mathrm{ex}.\:\mathrm{Euclidean}\:\mathrm{space}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{Sphere}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\:\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$
Question Number 218262 Answers: 1 Comments: 1
Question Number 218257 Answers: 1 Comments: 2
Question Number 218256 Answers: 2 Comments: 0
Question Number 218255 Answers: 0 Comments: 0
Question Number 218236 Answers: 1 Comments: 3
Question Number 218221 Answers: 1 Comments: 7
Question Number 218208 Answers: 1 Comments: 1
$${This}\:{question}\:{is}\:{really}\:{important} \\ $$$${Prove}\:{or}\:{disprove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{n}} {m}+\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{\lceil\frac{{n}}{\mathrm{2}}\rceil} }\:+\:\frac{\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} }\: \\ $$$$\:{the}\:{limit}\:{exists}\:{for}\:{m}\:\in\:{N}\:\backslash{B} \\ $$$${where}\:{B}\:=\:\left\{{n}\:\mid\:{log}_{\mathrm{2}} \left({n}\right)\:\in\:{N}\:\right\} \\ $$
Question Number 218206 Answers: 0 Comments: 0
Question Number 218202 Answers: 0 Comments: 3
Question Number 218199 Answers: 1 Comments: 0
$${describes}\:{the}\:{rupture}\:{body}\:{onQ} \\ $$$${of}\:{polynomials}. \\ $$$$\left.{a}\left.\right)\:{X}^{\mathrm{5}} +\mathrm{1}\:\:\:\:\:\:\:\:\:{b}\right)\:{X}^{\mathrm{6}} −{X}^{\mathrm{3}} +\mathrm{1} \\ $$
Question Number 218191 Answers: 0 Comments: 0
$${exercises}\:{algebra}. \\ $$$${all}\:\:{algebraically}\:\:{closed}\:\:{fields} \\ $$$${ares}\:{finite}. \\ $$$${prouve}\:\:{it}\:. \\ $$
Question Number 218189 Answers: 0 Comments: 0
Question Number 218188 Answers: 0 Comments: 0
Question Number 218187 Answers: 1 Comments: 0
Question Number 218185 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\left(\mathrm{n}\pi\:\sqrt{\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{2n}\:+\:\mathrm{2}\centerdot\left(\mathrm{k}\:+\:\mathrm{1}\right)}\right)\:=\:? \\ $$$$\mathrm{k}\:\in\:\mathbb{Z}\:-\:\mathrm{fixed} \\ $$
Question Number 218184 Answers: 1 Comments: 0
$$−\:\mathrm{2025}\:\::\:\:\mathrm{7} \\ $$$$\mathrm{Residue}\:=\:? \\ $$
Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70
Terms of Service
Privacy Policy
Contact: info@tinkutara.com