Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 66
Question Number 215032 Answers: 1 Comments: 1
Question Number 215020 Answers: 1 Comments: 2
$$ \\ $$$$\:\:\:\:{f}:\:\:\left[\mathrm{0}\:,\:\mathrm{1}\right]\:\rightarrow\mathbb{R}\:{is}\:{given}. \\ $$$$\:\:\:\:{f}\:''\:\:\:\:{is}\:{continuous}\:. \\ $$$$\:\:\:\:{by}\:{the}\:{way}\:\:{f}\left(\mathrm{0}\right)={f}\left(\mathrm{1}\right). \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\: \\ $$$$\begin{array}{|c|}{\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\:{f}\:''\:\left({x}\right)\right)^{\:\mathrm{2}} {dx}\:\geqslant\:\mathrm{3}\left({f}\:'\left(\mathrm{1}\right)\right)^{\mathrm{2}} }\\\hline\end{array} \\ $$$$ \\ $$
Question Number 215017 Answers: 2 Comments: 0
$${R}\acute {{e}soudre}\:{dans}\:\mathbb{C}\:{l}'\acute {{e}quation}\:: \\ $$$${sin}\left({z}\right)\:=\:\mathrm{2}. \\ $$
Question Number 215011 Answers: 0 Comments: 0
Question Number 215005 Answers: 1 Comments: 0
$$\:{a},{b},{c},{d}\in{R}\:{such}\:{that}, \\ $$$$\:\left({a}+{b}\right)\left({c}+{d}\right)=\mathrm{2} \\ $$$$\:\left({a}+{c}\right)\left({b}+{d}\right)=\mathrm{3} \\ $$$$\:\left({a}+{d}\right)\left({b}+{c}\right)=\mathrm{4}\: \\ $$$$\:{find}:\:\:\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} \right)_{{minimum}.} \\ $$
Question Number 215004 Answers: 0 Comments: 3
Question Number 214997 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=−\infty} {\overset{+\infty} {\sum}}\frac{{k}^{\mathrm{2}} +{k}+\mathrm{1}}{{k}^{\mathrm{4}} +\mathrm{1}}=? \\ $$$$ \\ $$
Question Number 214977 Answers: 2 Comments: 0
$$\:{Solve}: \\ $$$$\:\frac{\left(\mathrm{3}{x}−\mathrm{5}\right)^{\mathrm{5}} −\left(\mathrm{2}{x}−\mathrm{3}\right)^{\mathrm{5}} −\left({x}−\mathrm{2}\right)^{\mathrm{5}} }{\left(\mathrm{3}{x}−\mathrm{5}\right)^{\mathrm{3}} −\left(\mathrm{2}{x}−\mathrm{3}\right)^{\mathrm{3}} −\left({x}−\mathrm{2}\right)^{\mathrm{3}} }=\mathrm{65} \\ $$
Question Number 214973 Answers: 0 Comments: 1
Question Number 214964 Answers: 2 Comments: 0
Question Number 214961 Answers: 1 Comments: 2
$$\mathrm{Hi}\:\mathrm{guys}\:\mathrm{I}\:\mathrm{am}\:\mathrm{new} \\ $$
Question Number 214941 Answers: 2 Comments: 1
$${Cannot}\:{we}\:{find}\:{m}?\:{Given} \\ $$$$\:\:\left({m}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}{km}\left({m}−\frac{\mathrm{1}}{{k}}\right)\:\:\:\:\forall\:{k}\in\mathbb{R} \\ $$
Question Number 214936 Answers: 0 Comments: 17
$${Can}\:{we}\:{expand}\:{the}\:{Descartes}'\:{Theorem}\:{to}\:{more}\:{than}\:\mathrm{4}\:{circles}? \\ $$
Question Number 214928 Answers: 1 Comments: 2
Question Number 214925 Answers: 2 Comments: 1
Question Number 214923 Answers: 0 Comments: 0
Question Number 214917 Answers: 2 Comments: 0
Question Number 214916 Answers: 2 Comments: 0
Question Number 214915 Answers: 2 Comments: 0
Question Number 214888 Answers: 2 Comments: 2
Question Number 214905 Answers: 4 Comments: 2
Question Number 214900 Answers: 2 Comments: 0
Question Number 214898 Answers: 0 Comments: 0
Question Number 214876 Answers: 2 Comments: 3
Question Number 214860 Answers: 3 Comments: 1
$$\mathrm{Find}: \\ $$$$\mathrm{1}+\:\:\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}!}\:\:+\:\:\frac{\mathrm{3}^{\mathrm{3}} }{\mathrm{3}!}\:\:+\:\:...\:\:+\:\:\frac{\mathrm{n}^{\mathrm{3}} }{\mathrm{n}!}\:\:=\:\:? \\ $$
Question Number 214859 Answers: 2 Comments: 0
$$\mathrm{ABC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{such}\:\mathrm{that}\:\mathrm{AB}\:=\:\mathrm{AC}.\: \\ $$$$\mathrm{D}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:\mathrm{side}\:\mathrm{AC}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{BC}^{\mathrm{2}} \:=\:\mathrm{AC}.\mathrm{CD}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{BD}\:=\:\mathrm{BC}. \\ $$
Question Number 214857 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left({x}\right)\mathrm{ln}\left(\mathrm{1}+{x}\right)\mathrm{ln}\left(\mathrm{1}−{x}\right){dx}=? \\ $$
Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70
Terms of Service
Privacy Policy
Contact: info@tinkutara.com