Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 66

Question Number 218322    Answers: 1   Comments: 0

Evaluate ∫_0 ^(π/2) ((sin(x))/(sin^3 (x)+cos^3 (x))) dx.

$$\mathrm{Evaluate}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\left({x}\right)}{\mathrm{sin}^{\mathrm{3}} \left({x}\right)+\mathrm{cos}^{\mathrm{3}} \left({x}\right)}\:{dx}. \\ $$

Question Number 218318    Answers: 1   Comments: 3

Question Number 218317    Answers: 1   Comments: 0

Question Number 218280    Answers: 1   Comments: 0

Question Number 218279    Answers: 2   Comments: 0

Evaluate: (4^(log_(5/4) 4) /5^(log_(5/4) 5) ) Show workings please.

$$\mathrm{Evaluate}: \\ $$$$\:\:\:\:\:\frac{\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} } \\ $$$$\mathrm{Show}\:\mathrm{workings}\:\mathrm{please}. \\ $$

Question Number 218278    Answers: 0   Comments: 0

Question Number 218312    Answers: 1   Comments: 0

Question Number 218311    Answers: 1   Comments: 0

Question Number 218267    Answers: 1   Comments: 1

Question Number 218265    Answers: 1   Comments: 0

can interpret the metric Tensor g_(μν) is kinda distance function at curved Surface ?? ex. Euclidean space g_(μν) = ((1,0,0),(0,1,0),(0,0,1) ) Sphere g_(μν) = ((( 1),( 0),( 0)),(( 0),( r^2 ),( 0)),(( 0),( 0),(r^2 sin^2 (θ))) )

$$\mathrm{can}\:\mathrm{interpret}\:\mathrm{the}\:\mathrm{metric}\:\mathrm{Tensor}\:\boldsymbol{\mathrm{g}}_{\mu\nu} \:\mathrm{is}\: \\ $$$$\mathrm{kinda}\:\mathrm{distance}\:\mathrm{function}\:\mathrm{at}\:\mathrm{curved}\:\mathrm{Surface}\:?? \\ $$$$\mathrm{ex}.\:\mathrm{Euclidean}\:\mathrm{space}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{Sphere}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\:\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$

Question Number 218262    Answers: 1   Comments: 1

Question Number 218257    Answers: 1   Comments: 2

Question Number 218256    Answers: 2   Comments: 0

Question Number 218255    Answers: 0   Comments: 0

Question Number 218236    Answers: 1   Comments: 3

Question Number 218221    Answers: 1   Comments: 7

Question Number 218208    Answers: 1   Comments: 1

This question is really important Prove or disprove that lim_(n→∞) ((3^n m+3^(n−1) )/2^(⌈(n/2)⌉) ) + (3^(n−1) /2^n ) the limit exists for m ∈ N \B where B = {n ∣ log_2 (n) ∈ N }

$${This}\:{question}\:{is}\:{really}\:{important} \\ $$$${Prove}\:{or}\:{disprove}\:{that} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}^{{n}} {m}+\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{\lceil\frac{{n}}{\mathrm{2}}\rceil} }\:+\:\frac{\mathrm{3}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} }\: \\ $$$$\:{the}\:{limit}\:{exists}\:{for}\:{m}\:\in\:{N}\:\backslash{B} \\ $$$${where}\:{B}\:=\:\left\{{n}\:\mid\:{log}_{\mathrm{2}} \left({n}\right)\:\in\:{N}\:\right\} \\ $$

Question Number 218206    Answers: 0   Comments: 0

Question Number 218202    Answers: 0   Comments: 3

Question Number 218199    Answers: 1   Comments: 0

describes the rupture body onQ of polynomials. a) X^5 +1 b) X^6 −X^3 +1

$${describes}\:{the}\:{rupture}\:{body}\:{onQ} \\ $$$${of}\:{polynomials}. \\ $$$$\left.{a}\left.\right)\:{X}^{\mathrm{5}} +\mathrm{1}\:\:\:\:\:\:\:\:\:{b}\right)\:{X}^{\mathrm{6}} −{X}^{\mathrm{3}} +\mathrm{1} \\ $$

Question Number 218191    Answers: 0   Comments: 0

exercises algebra. all algebraically closed fields ares finite. prouve it .

$${exercises}\:{algebra}. \\ $$$${all}\:\:{algebraically}\:\:{closed}\:\:{fields} \\ $$$${ares}\:{finite}. \\ $$$${prouve}\:\:{it}\:. \\ $$

Question Number 218189    Answers: 0   Comments: 0

Question Number 218188    Answers: 0   Comments: 0

Question Number 218187    Answers: 1   Comments: 0

Question Number 218185    Answers: 1   Comments: 0

Find: lim_(n→∞) sin (nπ (√(n^2 + 2n + 2∙(k + 1)))) = ? k ∈ Z - fixed

$$\mathrm{Find}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{sin}\:\left(\mathrm{n}\pi\:\sqrt{\mathrm{n}^{\mathrm{2}} \:+\:\mathrm{2n}\:+\:\mathrm{2}\centerdot\left(\mathrm{k}\:+\:\mathrm{1}\right)}\right)\:=\:? \\ $$$$\mathrm{k}\:\in\:\mathbb{Z}\:-\:\mathrm{fixed} \\ $$

Question Number 218184    Answers: 1   Comments: 0

− 2025 : 7 Residue = ?

$$−\:\mathrm{2025}\:\::\:\:\mathrm{7} \\ $$$$\mathrm{Residue}\:=\:? \\ $$

  Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com