Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 659

Question Number 151616    Answers: 0   Comments: 4

let f(x)=((𝛌+x)/(1+x^2 )) and 𝛌≥((-3)/4) solve in R f(f(f(x))) ≤ 0

$$\mathrm{let}\:\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\boldsymbol{\lambda}+\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\:\boldsymbol{\lambda}\geqslant\frac{-\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{solve}\:\mathrm{in}\:\mathbb{R}\:\:\:\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:\leqslant\:\mathrm{0} \\ $$

Question Number 151615    Answers: 1   Comments: 0

How many numbers greater than 200 can be formed from the digits 1,2,3,4,5 if no digit is to be repeated in any particular number?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{200}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{formed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{digits}\:\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5}\:\mathrm{if}\:\mathrm{no} \\ $$$$\mathrm{digit}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{repeated}\:\mathrm{in}\:\mathrm{any}\:\mathrm{particular} \\ $$$$\mathrm{number}? \\ $$$$ \\ $$

Question Number 151614    Answers: 1   Comments: 0

𝛀 =∫_( 0) ^( 2𝛑) ((x + tan(sinx))/(𝛌 + cos(x))) dx ; 𝛌>1

$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{2}\boldsymbol{\pi}} {\int}}\frac{\mathrm{x}\:+\:\mathrm{tan}\left(\mathrm{sin}\boldsymbol{\mathrm{x}}\right)}{\boldsymbol{\lambda}\:+\:\mathrm{cos}\left(\boldsymbol{\mathrm{x}}\right)}\:\mathrm{dx}\:\:;\:\:\boldsymbol{\lambda}>\mathrm{1} \\ $$

Question Number 151612    Answers: 0   Comments: 0

∫_0 ^e (x/( (√(x−ln(x)))))dx

$$\int_{\mathrm{0}} ^{{e}} \frac{{x}}{\:\sqrt{{x}−{ln}\left({x}\right)}}{dx} \\ $$

Question Number 151609    Answers: 1   Comments: 0

Question Number 151602    Answers: 6   Comments: 0

Question Number 151599    Answers: 1   Comments: 0

Ω =∫_( 0) ^( ∞) cos(x^n ) dx = ?

$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\mathrm{cos}\left(\mathrm{x}^{\boldsymbol{\mathrm{n}}} \right)\:\mathrm{dx}\:=\:? \\ $$

Question Number 151596    Answers: 1   Comments: 0

Question Number 151587    Answers: 1   Comments: 0

∫sin^(−1) (√(x/(a+x))) dx

$$\int\mathrm{sin}^{−\mathrm{1}} \sqrt{\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}}}\:\mathrm{dx} \\ $$

Question Number 151586    Answers: 0   Comments: 0

∫e^(tan^(−1) x) (((1+x+x^2 )/(x^2 +1)))dx

$$\int\mathrm{e}^{\mathrm{tan}^{−\mathrm{1}} \mathrm{x}} \left(\frac{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\mathrm{dx} \\ $$

Question Number 151585    Answers: 0   Comments: 0

∫(dx/(x(√(a^n +x^n ))))

$$\int\frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{a}^{\mathrm{n}} +\mathrm{x}^{\mathrm{n}} }} \\ $$

Question Number 151630    Answers: 2   Comments: 0

Question Number 151573    Answers: 1   Comments: 0

Question Number 151568    Answers: 4   Comments: 0

∫ (√(sec(x)+tan(x))) dx how can it solve

$$\int\:\sqrt{{sec}\left({x}\right)+{tan}\left({x}\right)}\:{dx} \\ $$$$ \\ $$$${how}\:{can}\:{it}\:{solve} \\ $$

Question Number 151561    Answers: 1   Comments: 0

Given that x+iy=(a/(b+sin θ+icos θ)) show that (b^2 −1)(x^2 +y^2 )+a^2 =2abx

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{x}+\mathrm{iy}=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{sin}\:\theta+\mathrm{icos}\:\theta} \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{b}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)+\mathrm{a}^{\mathrm{2}} =\mathrm{2abx} \\ $$

Question Number 151560    Answers: 4   Comments: 0

show that i^i is always real

$$\mathrm{show}\:\mathrm{that}\:\:\mathrm{i}^{\mathrm{i}} \:\:\mathrm{is}\:\mathrm{always}\:\mathrm{real} \\ $$

Question Number 151559    Answers: 2   Comments: 0

prove that (1+cos θ+isin θ)^n + (1+cos θ−isin θ)^n =2^(n+1) cos (θ/2)cos ((nθ)/2)

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{1}+\mathrm{cos}\:\theta+\mathrm{isin}\:\theta\right)^{\mathrm{n}} \\ $$$$+\:\left(\mathrm{1}+\mathrm{cos}\:\theta−\mathrm{isin}\:\theta\right)^{\mathrm{n}} =\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{cos}\:\frac{\theta}{\mathrm{2}}\mathrm{cos}\:\frac{\mathrm{n}\theta}{\mathrm{2}} \\ $$

Question Number 151554    Answers: 1   Comments: 0

Question Number 151549    Answers: 1   Comments: 0

Compare: 2^2^2^.^.^. and 3^3^3^.^.^. Here it is raised 1001 times a square, 1000 times a cube.

$$\mathrm{Compare}: \\ $$$$\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{.^{.^{.} } } } } \:\:\:\:\:\mathrm{and}\:\:\:\:\:\mathrm{3}^{\mathrm{3}^{\mathrm{3}^{.^{.^{.} } } } } \\ $$$$\mathrm{Here}\:\mathrm{it}\:\mathrm{is}\:\mathrm{raised}\:\mathrm{1001}\:\mathrm{times}\:\mathrm{a}\:\mathrm{square}, \\ $$$$\mathrm{1000}\:\mathrm{times}\:\mathrm{a}\:\mathrm{cube}. \\ $$

Question Number 151538    Answers: 3   Comments: 0

Question Number 151533    Answers: 0   Comments: 10

Compare: 2^2^2 and 3^3^3

$$\mathrm{Compare}: \\ $$$$\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } \:\:\:\mathrm{and}\:\:\:\mathrm{3}^{\mathrm{3}^{\mathrm{3}} } \\ $$

Question Number 151531    Answers: 0   Comments: 1

Question Number 151519    Answers: 0   Comments: 0

∫_0 ^( ∞) ((ln(⌊x^2 ⌋!))/( (x^x +1)^x )) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\left(\lfloor{x}^{\mathrm{2}} \rfloor!\right)}{\:\left({x}^{{x}} +\mathrm{1}\right)^{{x}} }\:{dx} \\ $$$$\: \\ $$

Question Number 151518    Answers: 0   Comments: 0

Question Number 151513    Answers: 2   Comments: 0

Find two possible values of p if the lines px−y=0 and 3x+y+1=0 intersect at 45°

$$\mathrm{Find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{the}\:\mathrm{lines} \\ $$$${px}−{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{3}{x}+{y}+\mathrm{1}=\mathrm{0}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{45}° \\ $$

Question Number 151504    Answers: 1   Comments: 0

∫_0 ^( ∞) ((ln x)/( (√x) (√(x+1)) (√(2x+1)))) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\:{x}}{\:\sqrt{{x}}\:\sqrt{{x}+\mathrm{1}}\:\sqrt{\mathrm{2}{x}+\mathrm{1}}}\:{dx} \\ $$$$\: \\ $$

  Pg 654      Pg 655      Pg 656      Pg 657      Pg 658      Pg 659      Pg 660      Pg 661      Pg 662      Pg 663   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com