Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 659

Question Number 152653    Answers: 1   Comments: 0

Ω :=∫_0 ^( ∞) (( e^( −x^( 3) ) . sin (x^( 3) ))/x)dx= ((ζ (2 ))/2) m.n...

$$ \\ $$$$\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{3}} } .\:{sin}\:\left({x}^{\:\mathrm{3}} \:\right)}{{x}}{dx}=\:\frac{\zeta\:\left(\mathrm{2}\:\right)}{\mathrm{2}} \\ $$$$\:{m}.{n}... \\ $$$$ \\ $$

Question Number 152652    Answers: 0   Comments: 1

Question Number 152647    Answers: 1   Comments: 1

Question Number 152631    Answers: 1   Comments: 0

Question Number 152626    Answers: 1   Comments: 0

Solve for real numbers: (1/(x-1)) + (2/(x-2)) + (3/(x-3)) + (4/(x-4)) = 2x^2 -5x-4

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{x}-\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{x}-\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{x}-\mathrm{3}}\:+\:\frac{\mathrm{4}}{\mathrm{x}-\mathrm{4}}\:=\:\mathrm{2x}^{\mathrm{2}} -\mathrm{5x}-\mathrm{4} \\ $$

Question Number 152625    Answers: 1   Comments: 2

x^4 +c_3 x^3 +c_2 x^2 +c_1 x+c_0 =0 for c_n ∈R this can have 4 unique zeros ∈R 2 unique zeros + 1 double zero ∈R 2 double zeros ∈R 1 triple + 1 unique zeros ∈R 1 fourfold zero ∈R 2 unique zeros ∈R + 1 pair of complex zeros 1 double zero ∈R + 1 pair of complex zeros 2 pairs of complex zeros 2 double imaginary zeros for given c_n ; can we decide which case we have without solving?

$${x}^{\mathrm{4}} +{c}_{\mathrm{3}} {x}^{\mathrm{3}} +{c}_{\mathrm{2}} {x}^{\mathrm{2}} +{c}_{\mathrm{1}} {x}+{c}_{\mathrm{0}} =\mathrm{0} \\ $$$$\mathrm{for}\:{c}_{{n}} \in\mathbb{R}\:\mathrm{this}\:\mathrm{can}\:\mathrm{have} \\ $$$$\mathrm{4}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{unique}\:\mathrm{zeros}\:+\:\mathrm{1}\:\mathrm{double}\:\mathrm{zero}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{double}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{1}\:\mathrm{triple}\:+\:\mathrm{1}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R} \\ $$$$\mathrm{1}\:\mathrm{fourfold}\:\mathrm{zero}\:\in\mathbb{R} \\ $$$$\mathrm{2}\:\mathrm{unique}\:\mathrm{zeros}\:\in\mathbb{R}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{1}\:\mathrm{double}\:\mathrm{zero}\:\in\mathbb{R}\:+\:\mathrm{1}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{2}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{complex}\:\mathrm{zeros} \\ $$$$\mathrm{2}\:\mathrm{double}\:\mathrm{imaginary}\:\mathrm{zeros} \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{given}\:{c}_{{n}} ;\:\mathrm{can}\:\mathrm{we}\:\mathrm{decide}\:\mathrm{which}\:\mathrm{case}\:\mathrm{we} \\ $$$$\mathrm{have}\:\mathrm{without}\:\mathrm{solving}? \\ $$

Question Number 152617    Answers: 0   Comments: 1

Question Number 152608    Answers: 2   Comments: 0

By using the substitution x=cos 2θ, prove that ∫ (√((1+x)/(1−x))) dx = −sin 2θ−2θ+C

$$\mathrm{By}\:\mathrm{using}\:\mathrm{the}\:\mathrm{substitution}\:{x}=\mathrm{cos}\:\mathrm{2}\theta, \\ $$$$\mathrm{prove}\:\mathrm{that}\:\int\:\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}\:{dx}\:=\:−\mathrm{sin}\:\mathrm{2}\theta−\mathrm{2}\theta+{C} \\ $$

Question Number 152588    Answers: 3   Comments: 0

∫_(−1 ) ^1 ((3x+4)/(3+4x+3x^2 ))dt please,help me

$$\int_{−\mathrm{1}\:} ^{\mathrm{1}} \frac{\mathrm{3}{x}+\mathrm{4}}{\mathrm{3}+\mathrm{4}{x}+\mathrm{3}{x}^{\mathrm{2}} }{dt} \\ $$$${please},{help}\:{me} \\ $$

Question Number 152580    Answers: 1   Comments: 0

Question Number 152576    Answers: 0   Comments: 1

∫ ((t + 13)/( ((t^2 + 5t + 6))^(1/3) )) dt

$$\int\:\frac{\mathrm{t}\:\:\:+\:\:\:\mathrm{13}}{\:\sqrt[{\mathrm{3}}]{\mathrm{t}^{\mathrm{2}} \:\:\:+\:\:\:\mathrm{5t}\:\:\:+\:\:\:\mathrm{6}}}\:\:\mathrm{dt} \\ $$

Question Number 152572    Answers: 1   Comments: 0

∫_(−(Π/2)) ^(Π/2) ((1+cosx)/(3+2sinx))dx please,help me

$$\int_{−\frac{\Pi}{\mathrm{2}}} ^{\frac{\Pi}{\mathrm{2}}} \frac{\mathrm{1}+{cosx}}{\mathrm{3}+\mathrm{2}{sinx}}{dx} \\ $$$${please},{help}\:{me} \\ $$

Question Number 152571    Answers: 1   Comments: 0

2log4^x +9logx^4 =9 find x

$$\:\mathrm{2}\boldsymbol{{log}}\mathrm{4}^{\boldsymbol{{x}}} +\mathrm{9}\boldsymbol{{logx}}^{\mathrm{4}} =\mathrm{9} \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{x}} \\ $$

Question Number 152620    Answers: 1   Comments: 1

Question Number 152555    Answers: 2   Comments: 0

𝚺_(k=1) ^n k^5 =?

$$\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{k}}^{\mathrm{5}} =? \\ $$

Question Number 152551    Answers: 1   Comments: 0

((sin(x)+sin(2x)+....+sin(nx))/(cos(x)+cos(2x)+....+cos(nx))) = ?

$$\frac{{sin}\left({x}\right)+{sin}\left(\mathrm{2}{x}\right)+....+{sin}\left({nx}\right)}{{cos}\left({x}\right)+{cos}\left(\mathrm{2}{x}\right)+....+{cos}\left({nx}\right)}\:=\:? \\ $$

Question Number 152546    Answers: 1   Comments: 0

Question Number 152545    Answers: 1   Comments: 0

Question Number 152536    Answers: 1   Comments: 2

How many zeroes are there in 99!

$$\mathrm{How}\:\mathrm{many}\:\mathrm{zeroes}\:\mathrm{are}\:\mathrm{there}\:\mathrm{in}\:\:\:\mathrm{99}! \\ $$

Question Number 152533    Answers: 1   Comments: 0

Question Number 152532    Answers: 1   Comments: 0

Question Number 152522    Answers: 1   Comments: 2

Question Number 152791    Answers: 1   Comments: 0

Question Number 152513    Answers: 1   Comments: 1

∫ (1/(2x^2 +3x+8)) dx =?

$$\int\:\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{8}}\:{dx}\:=? \\ $$

Question Number 152502    Answers: 1   Comments: 0

∫ 9x^2 (4x^2 + 3)^(10) dx

$$\int\:\mathrm{9x}^{\mathrm{2}} \left(\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{3}\right)^{\mathrm{10}} \:\mathrm{dx} \\ $$

Question Number 152500    Answers: 0   Comments: 0

  Pg 654      Pg 655      Pg 656      Pg 657      Pg 658      Pg 659      Pg 660      Pg 661      Pg 662      Pg 663   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com