Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 657
Question Number 150486 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{x}}\:\in\:\mathbb{R} \\ $$$$\mid\mathrm{x}\:-\:\mathrm{1}\mid\:+\:\mid\mathrm{x}\:+\:\mathrm{3}\mid\:+\:\mid\mathrm{x}\:-\:\mathrm{5}\mid \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{given} \\ $$$$\mathrm{expression} \\ $$
Question Number 150453 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:,\:\bigtriangleup\mathrm{A}^{'} \mathrm{B}^{'} \mathrm{C}^{'} \:\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{relationship}\:\mathrm{holds}: \\ $$$$\mathrm{R}^{\mathrm{2}} \mathrm{R}^{'} \mathrm{F}^{'} \:\geqslant\:\mathrm{8F}\left(\mathrm{r}^{'} \right)^{\mathrm{3}} \\ $$
Question Number 150451 Answers: 2 Comments: 2
Question Number 150446 Answers: 0 Comments: 0
Question Number 150435 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mid\mathrm{x}\:-\:\mathrm{3}\mid^{\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:-\:\mathrm{8x}\:+\:\mathrm{15}}{\boldsymbol{\mathrm{x}}\:-\:\mathrm{2}}} \:=\:\mathrm{1} \\ $$
Question Number 150432 Answers: 1 Comments: 0
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2n}+\mathrm{1}\right)!}{\mathrm{8}^{\mathrm{n}} \centerdot\left(\mathrm{n}!\right)^{\mathrm{2}} }=?\:\:\:\:\:\mathrm{Help}\:\mathrm{please} \\ $$
Question Number 150429 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{tangents}\:\mathrm{to}\:\mathrm{the}\:\mathrm{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:{x}^{\mathrm{2}} =\mathrm{2}{y}−\mathrm{3}. \\ $$
Question Number 150425 Answers: 0 Comments: 6
Question Number 150421 Answers: 0 Comments: 0
Question Number 150418 Answers: 2 Comments: 3
Question Number 150413 Answers: 0 Comments: 3
Question Number 150410 Answers: 1 Comments: 1
Question Number 150392 Answers: 0 Comments: 0
Question Number 150376 Answers: 1 Comments: 2
Question Number 150374 Answers: 1 Comments: 0
$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\boldsymbol{\mathrm{k}}} \:+\:\mathrm{3}^{\boldsymbol{\mathrm{k}}} }{\mathrm{5}^{\boldsymbol{\mathrm{k}}} }\:\:=\:? \\ $$
Question Number 150372 Answers: 0 Comments: 1
Question Number 150450 Answers: 0 Comments: 0
$$\mathrm{show}\:\mathrm{the}?\mathrm{connection}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{beta}\:\mathrm{distribution}\left(\mathrm{n},\mathrm{p}\right)\:\mathrm{and}\:\mathrm{hypergeometric} \\ $$$$\mathrm{distribution}\left(\mathrm{N},\mathrm{k},\mathrm{n}\right)\mathrm{in}\:\mathrm{a}\:\mathrm{limiting}\:\mathrm{case} \\ $$
Question Number 150366 Answers: 0 Comments: 1
Question Number 150405 Answers: 2 Comments: 0
Question Number 150404 Answers: 4 Comments: 0
$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{log}\left(\mathrm{x}\right)}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 150402 Answers: 1 Comments: 1
$$\mathrm{For}\:\:\mathrm{m}\geqslant\mathrm{1} \\ $$$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{x}\:\mathrm{ln}^{\boldsymbol{\mathrm{m}}} \:\left(\mathrm{x}\right)}{\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{1}}\:=\:\mathrm{2}\:\mathrm{ln}^{\boldsymbol{\mathrm{m}}} \:\boldsymbol{\zeta}\left(\mathrm{3}\right) \\ $$
Question Number 150400 Answers: 0 Comments: 0
Question Number 150363 Answers: 2 Comments: 5
Question Number 150469 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4}^{\boldsymbol{\mathrm{x}}} }{\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}}\:\:\:\mathrm{find}\:\:\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{17}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{16}}{\mathrm{17}}\right)\:\overset{?} {=} \\ $$
Question Number 150351 Answers: 1 Comments: 2
Question Number 150350 Answers: 0 Comments: 0
Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661
Terms of Service
Privacy Policy
Contact: info@tinkutara.com