Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 657
Question Number 144067 Answers: 1 Comments: 0
$$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{1}^{\mathrm{3}} }\:+\:\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} }\:+\:...+\:\frac{\mathrm{n}^{\mathrm{3}} }{\mathrm{n}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} }\right)=? \\ $$
Question Number 144064 Answers: 2 Comments: 0
Question Number 144062 Answers: 0 Comments: 0
Question Number 144061 Answers: 1 Comments: 0
Question Number 144060 Answers: 2 Comments: 1
$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}\left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}\left({x}\right)+{R} \\ $$$${R}=? \\ $$
Question Number 144059 Answers: 1 Comments: 0
Question Number 144057 Answers: 2 Comments: 0
$${En}\:{utilisant}\:{la}\:{transforme}\:{de}\:{laplace} \\ $$$${Calculer} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{tsin}\left({xt}\right)}{{a}^{\mathrm{2}} +{t}^{\mathrm{2}} }{dt}\:\:\:\forall{a},{x}\in\mathbb{R}^{\ast} \\ $$
Question Number 144053 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\:{Calculus}........ \\ $$$$\:\:\:\:\:\:\:\Omega:={lim}\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{{sin}\left({kx}\right)}{\:\sqrt{\mathrm{2}^{{k}} }}\right)^{\mathrm{2}} {dx}=? \\ $$$$ \\ $$
Question Number 144052 Answers: 1 Comments: 0
$$\mathrm{Evaluate}\: \\ $$$$\:\int\:\frac{\sqrt{{x}}}{\mathrm{sinh}\:{x}}\:{dx} \\ $$
Question Number 144050 Answers: 0 Comments: 1
$${in}\:{a}\:{triangle}\:{ABC}\:{we}\:{have} \\ $$$$\begin{cases}{\mathrm{2}{sin}\hat {{A}}+\mathrm{4}{cos}\hat {{B}}=\mathrm{6}}\\{\mathrm{4}{sin}\hat {{B}}+\mathrm{3}{cos}\hat {{A}}=\mathrm{1}}\end{cases} \\ $$$${determine}\:\hat {{C}} \\ $$
Question Number 144049 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\mathrm{the}\:\mathrm{equation}\:\:\mathrm{1000}\:=\:\mathrm{2000}\left(\frac{\mathrm{1}−\left(\mathrm{1}+{t}\right)^{−{n}} }{{t}}\right) \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{t}. \\ $$
Question Number 144199 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}+\frac{\mathrm{1}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{5}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{7}^{\mathrm{2}} }{\mathrm{6}+\frac{\mathrm{9}^{\mathrm{2}} }{\mathrm{6}+...}}}}}=\frac{\mathrm{2}}{\mathrm{1}+\frac{\mathrm{1}×\mathrm{2}}{\mathrm{1}+\frac{\mathrm{2}×\mathrm{3}}{\mathrm{1}+\frac{\mathrm{3}×\mathrm{4}}{\mathrm{1}+\frac{\mathrm{4}×\mathrm{5}}{\mathrm{1}+\frac{\mathrm{5}×\mathrm{6}}{\mathrm{1}+...}}}}}} \\ $$
Question Number 144042 Answers: 3 Comments: 0
Question Number 144038 Answers: 0 Comments: 0
Question Number 144031 Answers: 1 Comments: 0
Question Number 144026 Answers: 1 Comments: 1
Question Number 144025 Answers: 1 Comments: 0
$$\mathrm{Between}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}.\:\mathrm{today}\:\mathrm{and}\:\mathrm{12}\:\mathrm{p}.\mathrm{m}. \\ $$$$\mathrm{tomorrow},\:\mathrm{how}\:\mathrm{many}\:\mathrm{times}\:\mathrm{do}\:\mathrm{the} \\ $$$$\mathrm{hour}\:\mathrm{hand}\:\mathrm{and}\:\mathrm{the}\:\mathrm{minute}\:\mathrm{hand}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{clock}\:\mathrm{form}\:\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{120}°? \\ $$
Question Number 144021 Answers: 0 Comments: 0
Question Number 144016 Answers: 0 Comments: 0
Question Number 144015 Answers: 0 Comments: 0
Question Number 144007 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}\:\mathrm{cosec}\:\mathrm{x} \\ $$$$\mathrm{if}\:\mathrm{0}<\mathrm{x}<\frac{\Pi}{\mathrm{6}} \\ $$
Question Number 144006 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sec}\:\mathrm{2A}+\mathrm{sec}\:\mathrm{2B} \\ $$$$\mathrm{where}\:\mathrm{A}+\mathrm{B}\:\mathrm{is}\:\mathrm{constant}\:\mathrm{and} \\ $$$$\mathrm{A},\mathrm{B}\in\left(\mathrm{o}\:\frac{\Pi}{\mathrm{4}}\right) \\ $$
Question Number 144001 Answers: 2 Comments: 0
Question Number 144000 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that}\: \\ $$$$ \\ $$$$\forall_{{m}} \in\mathbb{N}\:,\:{a}_{{k}} ,{b}_{{k}} \in\mathbb{R} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}} {x}\:=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{a}_{{k}} \mathrm{cos}\:\mathrm{2}{kx} \\ $$$$\mathrm{cos}\:^{\mathrm{2}{m}−\mathrm{1}} {x}=\underset{{k}=\mathrm{1}} {\overset{{m}} {\sum}}{b}_{{k}} \mathrm{cos}\:\left(\mathrm{2}{k}−\mathrm{1}\right){x} \\ $$$$ \\ $$$$\mathrm{and}\:\:\mathrm{find}\:\mathrm{expr}\:\:\mathrm{of}\:\:{a}_{{k}} \:,{b}_{{k}} \:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{k}. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 143997 Answers: 2 Comments: 0
$$\:{The}\:{maximum}\:{value}\:{of}\: \\ $$$${y}\:=\:\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }−\sqrt{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${is}\:\left({A}\right)\:\sqrt{\mathrm{10}}\:\:\:\:\:\:\:\left({C}\right)\:\mathrm{4}\: \\ $$$$\:\:\:\:\:\:\left({B}\right)\:\mathrm{2}\sqrt{\mathrm{5}}\:\:\:\:\:\left({D}\right)\:\mathrm{10}\: \\ $$
Question Number 143995 Answers: 1 Comments: 0
$$\:\:\underset{{x}\rightarrow\pi/\mathrm{4}} {\mathrm{lim}}\frac{\pi−\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\sqrt{\mathrm{sin}\:\mathrm{2}{x}}}}\:=? \\ $$
Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658 Pg 659 Pg 660 Pg 661
Terms of Service
Privacy Policy
Contact: info@tinkutara.com