Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 655
Question Number 152723 Answers: 1 Comments: 0
Question Number 152722 Answers: 1 Comments: 0
Question Number 152721 Answers: 0 Comments: 2
Question Number 152788 Answers: 0 Comments: 0
Question Number 152790 Answers: 0 Comments: 1
Question Number 152714 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\:\frac{{x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} +\mathrm{1}}{\:\sqrt{{x}+{y}+{z}}+\mathrm{1}}\:\:\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 152797 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{nice}..{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}... \\ $$$$\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{cos}\:\left({x}\:\right)}{{cosh}\:\left({x}\:\right)}\:{dx}=\frac{\pi}{\:{cosh}\:\left(\frac{\pi}{\mathrm{2}}\:\right)}\:.......\blacksquare\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{prepared}\:::\:\:{m}.{n} \\ $$$$ \\ $$
Question Number 152712 Answers: 0 Comments: 0
Question Number 152703 Answers: 2 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{{x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} }{{x}+{y}+{z}}\:\:\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 152701 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 152697 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\bigtriangleup\mathrm{ABC}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\Sigma\:\frac{\left(\mathrm{r}_{\boldsymbol{\mathrm{a}}} +\mathrm{r}_{\boldsymbol{\mathrm{b}}} \right)\left(\mathrm{r}_{\boldsymbol{\mathrm{a}}} +\mathrm{r}_{\boldsymbol{\mathrm{c}}} \right)}{\mathrm{h}_{\boldsymbol{\mathrm{b}}} +\mathrm{h}_{\boldsymbol{\mathrm{c}}} }\:\geqslant\:\frac{\mathrm{9r}}{\mathrm{2}} \\ $$
Question Number 152715 Answers: 0 Comments: 2
$$\mathrm{By}\:\mathrm{eliminating}\:\:\theta,\:\:\:\mathrm{show}\:\mathrm{that}\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \:\:\:=\:\:\:−\:\:\:\mathrm{y}^{\mathrm{2}} ,\:\:\:\:\:\: \\ $$$$\mathrm{if}\:\:\:\:\:\mathrm{x}\:\mathrm{sin}^{\mathrm{3}} \theta\:\:\:+\:\:\:\mathrm{y}\:\mathrm{cos}^{\mathrm{3}} \theta\:\:\:\:=\:\:\:\:\mathrm{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\:\:\mathrm{x}\:\mathrm{sin}\theta\:\:\:\:−\:\:\:\mathrm{y}\:\mathrm{cos}\theta\:\:\:\:=\:\:\:\:\mathrm{0} \\ $$
Question Number 152692 Answers: 0 Comments: 0
$$\mathrm{If}\:{b}\:\mathrm{and}\:{h}\:\mathrm{are}\:\mathrm{two}\:\mathrm{integers}\:\mathrm{with}\:{b}>{h}, \\ $$$$\mathrm{and}\:{b}^{\mathrm{2}} +{h}^{\mathrm{2}} ={b}\left({a}+{h}\right)+{ah}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{b}. \\ $$
Question Number 152691 Answers: 1 Comments: 0
$$\mathrm{If}\:{a},{p},{q}\:\mathrm{are}\:\mathrm{primes}\:\mathrm{with}\:{a}<{p},\:\mathrm{and} \\ $$$${a}+{p}={q},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}. \\ $$
Question Number 152683 Answers: 1 Comments: 0
$${The}\:{probability}\:{that}\:{athlete}\:{will}\:{win}\:{a}\:{race}\:{is}\:\frac{\mathrm{1}}{\mathrm{6}}\:{and}\:{that} \\ $$$${he}\:{will}\:{be}\:{second}\:{and}\:{third}\:{are}\:\frac{\mathrm{1}}{\mathrm{4}}\:{and}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${respectively}.{what}\:{is}\:{the}\:{probability}\:{that}\:{he}\:{will}\:{not}\:{be}\:{first} \\ $$$${in}\:{the}\:{first}\:{three}\:{place}! \\ $$$${Please},{help}\:{me}\:{out} \\ $$
Question Number 152682 Answers: 1 Comments: 0
Question Number 152672 Answers: 1 Comments: 0
Question Number 152671 Answers: 3 Comments: 2
Question Number 152670 Answers: 1 Comments: 0
Question Number 152678 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\mathrm{a}^{\mathrm{3}} -\mathrm{6a}^{\mathrm{2}} +\mathrm{15a}-\mathrm{17}=\mathrm{0}\:\:\:\mathrm{and} \\ $$$$\mathrm{a}^{\mathrm{3}} -\mathrm{6a}^{\mathrm{2}} +\mathrm{15a}-\mathrm{11}=\mathrm{0} \\ $$
Question Number 152663 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{x}^{\mathrm{3}} -\mathrm{x}+\mathrm{3}=\mathrm{0}\:\mathrm{has}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{a},\:\mathrm{b}\:\mathrm{and}\:\mathrm{c}. \\ $$$$\mathrm{determine}\:\mathrm{the}\:\mathrm{monic}\:\mathrm{polynomial}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{roots}\:\:\mathrm{a}^{\mathrm{5}} ,\:\mathrm{b}^{\mathrm{5}} \:\mathrm{and}\:\:\mathrm{c}^{\mathrm{5}} . \\ $$$$\left[{Q}\mathrm{152396}\right] \\ $$
Question Number 152660 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{x}}{\:\sqrt{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{3}} }}\:\mathrm{dx} \\ $$
Question Number 152653 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{3}} } .\:{sin}\:\left({x}^{\:\mathrm{3}} \:\right)}{{x}}{dx}=\:\frac{\zeta\:\left(\mathrm{2}\:\right)}{\mathrm{2}} \\ $$$$\:{m}.{n}... \\ $$$$ \\ $$
Question Number 152652 Answers: 0 Comments: 1
Question Number 152647 Answers: 1 Comments: 1
Question Number 152631 Answers: 1 Comments: 0
Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658 Pg 659
Terms of Service
Privacy Policy
Contact: info@tinkutara.com