Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 655
Question Number 152795 Answers: 1 Comments: 0
$$ \\ $$$$\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}\:\right)}{{x}}\left(\frac{{a}^{\:\mathrm{2}} +{cos}^{\:\mathrm{2}} \left({x}\right)}{{b}^{\:\mathrm{2}} +\:{cos}^{\:\mathrm{2}} \left({x}\:\right)}\right){dx}=? \\ $$$$ \\ $$
Question Number 152779 Answers: 0 Comments: 4
Question Number 152778 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Solve}\:.......... \\ $$$$\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{sin}\left(\:{ln}\:\left({x}\:\right)\right){dx}\:\overset{?} {=}\:\frac{−\mathrm{1}}{\:\:\:\mathrm{5}}\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solution}.... \\ $$$$\:\:\:\:\:\Omega\::\overset{{i}.{b}.{p}} {=}\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:.\:{sin}\left({ln}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\:\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \:{x}.{cos}\left(\:{ln}\:\left({x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\frac{−\mathrm{1}}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}.\:{cos}\:\left({ln}\:\left({x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::\overset{{i}.{b}.{p}} {=}\:\frac{−\mathrm{1}}{\mathrm{2}}\:\left\{\left[\:\frac{{x}^{\:\mathrm{2}} }{\mathrm{2}}\:{cos}\:\left({ln}\left({x}\:\right)\right)\right]_{\mathrm{0}} ^{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}\:\int{x}.\:{sin}\left({ln}\left({x}\:\right)\right){dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::=\:\frac{−\mathrm{1}}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{4}}\:\Omega \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{5}}{\mathrm{4}}\:\Omega\:=\:\frac{−\mathrm{1}}{\mathrm{4}}\:\:\Rightarrow\:\:\:\Omega\::=\:\frac{−\mathrm{1}}{\:\mathrm{5}}\:\:.........\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:.................................\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 152772 Answers: 1 Comments: 2
$$\boldsymbol{{if}}\:\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}+\mathrm{2}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{\boldsymbol{{x}}−\mathrm{2}}}=\mathrm{2} \\ $$$$\:\boldsymbol{\mathrm{then}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\sqrt{\mathrm{198}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{868}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{229}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{200}\boldsymbol{\mathrm{x}}} \\ $$
Question Number 152771 Answers: 0 Comments: 2
$$\mathrm{If}\:\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:=\:\:\:\:\mathrm{z}\:\mathrm{sin}\left(\mathrm{z}\right)\:\:\:+\:\:\:\mid\mathrm{z}\mid^{\mathrm{2}} ,\:\:\:\:\:\:\:\mathrm{verify}\:\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{z}\right)\:\:\:\mathrm{satisfy}\:\mathrm{cauchy}\:\mathrm{rieman} \\ $$$$\mathrm{condition} \\ $$
Question Number 152770 Answers: 0 Comments: 1
$${How}\:\:{to}\:\:{prove}\:\:{that} \\ $$$$\:\:{a}<{b}<{c}\:\:\Rightarrow\:\:{a}+{b}\:>\:{c} \\ $$$${which}\:\:{a},{b},{c}\:\:{are}\:\:{sides}\:\:{of}\:\:{a}\:\:{triangle}\:? \\ $$
Question Number 152769 Answers: 1 Comments: 1
Question Number 152768 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5x}+\mathrm{1}}{−\mathrm{5x}+\mathrm{2}}\right)^{\mathrm{1}+\mathrm{2x}} =? \\ $$
Question Number 152764 Answers: 3 Comments: 2
Question Number 152761 Answers: 0 Comments: 0
$$ \\ $$$$\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\mathrm{S}\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\:\mathrm{1}}{{sinh}\:\left(\mathrm{2}^{\:{n}} .{x}\right)}\right)\:\overset{?} {=}\frac{\:\mathrm{2}}{{e}^{\:\mathrm{2}{x}} −\mathrm{1}} \\ $$$$\:{m}.{n}... \\ $$
Question Number 152757 Answers: 1 Comments: 0
$${Find}\:{all}\:{complex}\:{number}\:{z}\:{such} \\ $$$${that}\:\left(\mathrm{3}{z}+\mathrm{1}\right)\left(\mathrm{4}{z}+\mathrm{1}\right)\left(\mathrm{6}{z}+\mathrm{1}\right)\left(\mathrm{12}{z}+\mathrm{1}\right)=\mathrm{2} \\ $$
Question Number 152793 Answers: 0 Comments: 2
$$\:\int!\boldsymbol{{dx}} \\ $$$$ \\ $$$$\:\boldsymbol{{i}}\:\boldsymbol{{found}}\:\:\boldsymbol{{this}}\:\boldsymbol{{question}}\:\boldsymbol{{somewhere}} \\ $$$$\:\boldsymbol{{and}}\:\boldsymbol{{i}}\:\boldsymbol{{dont}}\:\boldsymbol{{know}}\:\boldsymbol{{even}}\:\boldsymbol{{know}}\:\boldsymbol{{how}}\:\boldsymbol{{to}} \\ $$$$\boldsymbol{{approach}}\:\boldsymbol{{it}}. \\ $$
Question Number 152753 Answers: 2 Comments: 12
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triplets}\:\left(\mathrm{a};\mathrm{b};\mathrm{c}\right)\:\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{which}\:\mathrm{satisfy}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{c}}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 152752 Answers: 0 Comments: 2
$$\:{Given}\:\sqrt[{\mathrm{3}}]{\sqrt[{\mathrm{3}}]{{x}−\mathrm{2}}+\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{2}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{2}}}\:=\mathrm{2} \\ $$$${then}\:\sqrt{\mathrm{198}{x}^{\mathrm{4}} −\mathrm{868}{x}^{\mathrm{3}} −\mathrm{229}{x}^{\mathrm{2}} +\mathrm{200}{x}}\:=? \\ $$
Question Number 152751 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left(\mathrm{cos}\left(\mathrm{2cos}\left({x}\right)+\mathrm{1}\right)+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }{\left(\mathrm{ln}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}−{x}\right)\right)^{\mathrm{4}} }\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 152748 Answers: 1 Comments: 0
Question Number 152730 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{3}}} \frac{{tanx}}{\:\sqrt{\mathrm{2}{cosx}−\mathrm{1}}}{dx} \\ $$
Question Number 152723 Answers: 1 Comments: 0
Question Number 152722 Answers: 1 Comments: 0
Question Number 152721 Answers: 0 Comments: 2
Question Number 152788 Answers: 0 Comments: 0
Question Number 152790 Answers: 0 Comments: 1
Question Number 152714 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\:\frac{{x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} +\mathrm{1}}{\:\sqrt{{x}+{y}+{z}}+\mathrm{1}}\:\:\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 152797 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{nice}..{mathematics}... \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}... \\ $$$$\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{cos}\:\left({x}\:\right)}{{cosh}\:\left({x}\:\right)}\:{dx}=\frac{\pi}{\:{cosh}\:\left(\frac{\pi}{\mathrm{2}}\:\right)}\:.......\blacksquare\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{prepared}\:::\:\:{m}.{n} \\ $$$$ \\ $$
Question Number 152712 Answers: 0 Comments: 0
Question Number 152703 Answers: 2 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{{x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} }{{x}+{y}+{z}}\:\:\:{dxdydz} \\ $$$$\: \\ $$$$\: \\ $$
Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658 Pg 659
Terms of Service
Privacy Policy
Contact: info@tinkutara.com