Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 654

Question Number 152940    Answers: 1   Comments: 0

In bottle manufacturing company, it was observed that 5% of the bottles manufactured were defective. In a random sample of 150 bottles, find probability that (a) exactly 3, (b) between 3 and 6, (c) at most 4, manufactured bottles are defective. [Take e = 2.718]

$$\:\mathrm{In}\:\mathrm{bottle}\:\mathrm{manufacturing}\:\mathrm{company},\:\mathrm{it} \\ $$$$\mathrm{was}\:\mathrm{observed}\:\mathrm{that}\:\mathrm{5\%}\:\mathrm{of}\:\mathrm{the}\:\mathrm{bottles} \\ $$$$\mathrm{manufactured}\:\mathrm{were}\:\mathrm{defective}.\:\mathrm{In}\:\mathrm{a}\: \\ $$$$\mathrm{random}\:\mathrm{sample}\:\mathrm{of}\:\mathrm{150}\:\mathrm{bottles},\:\mathrm{find}\: \\ $$$$\mathrm{probability}\:\mathrm{that}\: \\ $$$$\:\left({a}\right)\:\mathrm{exactly}\:\mathrm{3}, \\ $$$$\:\left({b}\right)\:\mathrm{between}\:\mathrm{3}\:\mathrm{and}\:\mathrm{6}, \\ $$$$\:\left({c}\right)\:\mathrm{at}\:\mathrm{most}\:\mathrm{4}, \\ $$$$\:\mathrm{manufactured}\:\mathrm{bottles}\:\mathrm{are}\:\mathrm{defective}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[\mathrm{Take}\:\:{e}\:=\:\mathrm{2}.\mathrm{718}\right] \\ $$

Question Number 152939    Answers: 1   Comments: 0

Q : If a , b are positive numbers and { (( a = 1 + (( 6a −2))^(1/3) )),(( b = 1 + (( 6b −2))^(1/3) )) :} then find the value of , a.b =? ... Compiled by m.n : (E lementary olympiad ). ■

$$ \\ $$$$\:\:\:\:\:\mathrm{Q}\::\:\:\mathrm{If}\:\:\:\:{a}\:\:,\:\:{b}\:\:\:\:\mathrm{are}\:\mathrm{positive}\:\mathrm{numbers}\:\:\mathrm{and} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\:\:{a}\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\mathrm{6}{a}\:−\mathrm{2}}\:\:}\\{\:\:\:{b}\:=\:\mathrm{1}\:+\:\sqrt[{\mathrm{3}}]{\:\mathrm{6}{b}\:−\mathrm{2}}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:,\:\:\:\:{a}.{b}\:=? \\ $$$$\:\:\:\:...\:\mathrm{Compiled}\:\mathrm{by}\:\mathrm{m}.\mathrm{n}\::\:\left(\mathscr{E}\:{lementary}\:{olympiad}\:\right).\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Question Number 152937    Answers: 1   Comments: 0

Question Number 152935    Answers: 1   Comments: 0

Question Number 152918    Answers: 1   Comments: 0

Find the first derivative of y=x(√(16−x^2 ))+16sin^(−1) (x/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{first}\:\mathrm{derivative}\:\mathrm{of}\: \\ $$$${y}={x}\sqrt{\mathrm{16}−{x}^{\mathrm{2}} }+\mathrm{16sin}^{−\mathrm{1}} \frac{{x}}{\mathrm{4}} \\ $$

Question Number 152912    Answers: 1   Comments: 0

Question Number 152910    Answers: 0   Comments: 0

∫^ x^x^x dx=

$$\int^{} {x}^{{x}^{{x}} } {dx}= \\ $$

Question Number 152907    Answers: 1   Comments: 0

Find a closed form: Ω=(∫_( 0) ^( 1) ((x^(29) −x^9 )/(x^(40) +1)) dx)(∫_( 0) ^( 1) ((x^(29) −2x^9 )/(x^(40) +4))dx)

$$\mathrm{Find}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{form}: \\ $$$$\Omega=\left(\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{29}} −\mathrm{x}^{\mathrm{9}} }{\mathrm{x}^{\mathrm{40}} +\mathrm{1}}\:\mathrm{dx}\right)\left(\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{x}^{\mathrm{29}} −\mathrm{2x}^{\mathrm{9}} }{\mathrm{x}^{\mathrm{40}} +\mathrm{4}}\mathrm{dx}\right) \\ $$

Question Number 152901    Answers: 0   Comments: 0

Question Number 152900    Answers: 1   Comments: 0

Question Number 152899    Answers: 0   Comments: 0

Question Number 152898    Answers: 1   Comments: 2

Question Number 153130    Answers: 1   Comments: 0

if x^5 +x^4 +x^3 +2x^2 +x+1=0 find x^3 - (1/x^3 ) = ?

$$\mathrm{if}\:\:\:\mathrm{x}^{\mathrm{5}} +\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{find}\:\:\:\mathrm{x}^{\mathrm{3}} \:-\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\:=\:? \\ $$

Question Number 152892    Answers: 0   Comments: 2

Solve for real numbers the following system of equations: { ((x^2 - yz = 3)),((y^2 - xz = 1)),((z^2 - xy = - 1)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{yz}\:=\:\mathrm{3}}\\{\mathrm{y}^{\mathrm{2}} \:-\:\mathrm{xz}\:=\:\mathrm{1}}\\{\mathrm{z}^{\mathrm{2}} \:-\:\mathrm{xy}\:=\:-\:\mathrm{1}}\end{cases} \\ $$

Question Number 152889    Answers: 0   Comments: 7

Σ_(k=1) ^n ((Σ_(k=1) ^n k^α )/((n+1)^α Σ_(k=1) ^n (1+nα)))=(1/(6o)) α=? α=?q

$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\alpha} }{\left({n}+\mathrm{1}\right)^{\alpha} \:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{1}+{n}\alpha\right)}=\frac{\mathrm{1}}{\mathrm{6}{o}}\: \\ $$$$\alpha=? \\ $$$$\alpha=?{q} \\ $$

Question Number 152887    Answers: 1   Comments: 0

∫_1 ^( 2) (3/( (√((x^2 +3)^3 ))))

$$\int_{\mathrm{1}} ^{\:\mathrm{2}} \:\:\frac{\mathrm{3}}{\:\sqrt{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{3}} }} \\ $$

Question Number 154210    Answers: 0   Comments: 2

Question Number 152881    Answers: 0   Comments: 0

∫_( 0) ^( 1) Li_2 ((x/(1 - x))) log(x) log(1 - x) dx = ?

$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{Li}_{\mathrm{2}} \:\left(\frac{\mathrm{x}}{\mathrm{1}\:-\:\mathrm{x}}\right)\:\mathrm{log}\left(\mathrm{x}\right)\:\mathrm{log}\left(\mathrm{1}\:-\:\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$

Question Number 152879    Answers: 0   Comments: 3

lim_(x→+oo) ((Σ_(k=1) ^n k^α )/((n+1)^α Σ_(k=1) ^n (nα+1)))=(1/(6o)) .α=?

$$\underset{{x}\rightarrow+{oo}} {\mathrm{lim}}\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\alpha} \:\:\:}{\left({n}+\mathrm{1}\right)^{\alpha} \:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left({n}\alpha+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{6}{o}}\:\:.\alpha=? \\ $$

Question Number 152904    Answers: 5   Comments: 0

Question Number 152903    Answers: 5   Comments: 0

Question Number 152874    Answers: 2   Comments: 0

solve: I := ∫_0 ^( ∞) ((( tanh (x) )/x) )^( 2) dx = ? m.n.

$$ \\ $$$$\:\:\:{solve}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\:{tanh}\:\left({x}\right)\:}{{x}}\:\right)^{\:\mathrm{2}} {dx}\:=\:? \\ $$$$\:\:{m}.{n}. \\ $$

Question Number 152863    Answers: 1   Comments: 1

∫_(−∞) ^( ∞) (1/( (√(x^2 +1)))) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}}\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 152861    Answers: 0   Comments: 0

∫_(−∞) ^( ∞) (((ln((x^(√(x^2 +1)) +1)^2 +1))^(−ln(x^2 +1)) )/( (√(x^(∣⌊x⌋∣) +1)))) dx

$$\: \\ $$$$\:\:\:\:\:\:\: \\ $$$$\int_{−\infty} ^{\:\infty} \frac{\left(\mathrm{ln}\left(\left({x}^{\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}\right)\right)^{−\mathrm{ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right)} }{\:\sqrt{{x}^{\mid\lfloor{x}\rfloor\mid} +\mathrm{1}}}\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 152866    Answers: 0   Comments: 0

∫_(−∞) ^( ∞) ((ln((√(x^4 +1))))/((ln(((√(x^2 +1)))^3 ))^2 )) dx

$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{ln}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\right)}{\left(\mathrm{ln}\left(\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)^{\mathrm{3}} \right)\right)^{\mathrm{2}} }\:\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 152857    Answers: 0   Comments: 0

An electric current passes through two voltmeters in series containing copper sulphate (CuSO₄) and silver nitrate (AgNO₃) respectively. What is the mass of silver deposited in a given time, if the mass of copper deposited in that time is 1g. (Cu = 63 , Ag = 108 valency of Cu is 2 and valency of Ag is 1).

An electric current passes through two voltmeters in series containing copper sulphate (CuSO₄) and silver nitrate (AgNO₃) respectively. What is the mass of silver deposited in a given time, if the mass of copper deposited in that time is 1g. (Cu = 63 , Ag = 108 valency of Cu is 2 and valency of Ag is 1).

  Pg 649      Pg 650      Pg 651      Pg 652      Pg 653      Pg 654      Pg 655      Pg 656      Pg 657      Pg 658   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com