Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 654
Question Number 144333 Answers: 0 Comments: 3
$$\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{1}+\:\mathrm{sin}\:\mathrm{x}.\mathrm{sin}^{\mathrm{2}} \frac{\mathrm{x}}{\mathrm{2}}=\mathrm{0}\:\mathrm{in}\:\left[−\Pi\:\Pi\right] \\ $$
Question Number 144332 Answers: 0 Comments: 0
$$ \\ $$
Question Number 144307 Answers: 2 Comments: 1
$${lim}_{{n}\rightarrow\infty} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{p}} \\ $$
Question Number 144305 Answers: 2 Comments: 0
$$\mathrm{if}\:\left(\mathrm{a}−\mathrm{b}\right)\mathrm{sin}\left(\theta+\phi\right)=\left(\mathrm{a}+\mathrm{b}\right)\mathrm{sin}\left(\theta−\phi\right)\: \\ $$$$\mathrm{and}\:\mathrm{a}\:\mathrm{tan}\frac{\theta}{\mathrm{2}}\:−\:\mathrm{b}\:\mathrm{tan}\frac{\phi}{\mathrm{2}}\:=\:\mathrm{c}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following} \\ $$$$\left.\mathrm{i}\right)\:\mathrm{sin}\phi\:=\:\frac{\mathrm{2bc}}{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} }\: \\ $$$$\left.\mathrm{ii}\right)\:\mathrm{sin}\theta\:=\:\frac{\mathrm{2ac}}{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} }\: \\ $$
Question Number 144301 Answers: 1 Comments: 0
Question Number 144300 Answers: 1 Comments: 0
Question Number 144293 Answers: 1 Comments: 0
Question Number 144291 Answers: 1 Comments: 0
Question Number 144282 Answers: 1 Comments: 0
$$\mathrm{I}=\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{3}}} \frac{\mathrm{sin}^{\mathrm{2021}} \mathrm{x}}{\mathrm{sin}^{\mathrm{2021}} \mathrm{x}+\mathrm{cos}^{\mathrm{2021}} \mathrm{x}}\mathrm{dx}=? \\ $$
Question Number 144273 Answers: 1 Comments: 0
Question Number 144272 Answers: 1 Comments: 0
$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}} }\mathrm{tanh}\left(\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{k}} }\right)=? \\ $$
Question Number 144271 Answers: 3 Comments: 1
$${a},{b},{c}\:{are}\:{in}\:{G}.{P}.\:{If}\:{a}^{{x}} ={b}^{{y}} ={c}^{{z}} \\ $$$${prove}\:{that}\:\frac{\mathrm{1}}{{x}},\frac{\mathrm{1}}{{z}}\:{are}\:{in}\:{A}.{P}. \\ $$
Question Number 144270 Answers: 1 Comments: 0
Question Number 144269 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \lfloor\frac{{y}^{\mathrm{3}} }{{e}^{{y}} −\mathrm{1}}\rfloor{dy} \\ $$
Question Number 144268 Answers: 2 Comments: 0
Question Number 144264 Answers: 0 Comments: 0
$$\mathrm{Let}\:{a},{b}\:>\:\mathrm{0}\:\mathrm{and}\:\mathrm{2}{a}+{b}\:=\:\mathrm{3}.\:\mathrm{Prove}\:\mathrm{the}\:\mathrm{followings}:\:\:\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{2}}{{n}}{a}\left({b}+\mathrm{4}\right)+\mathrm{3}{b}^{\frac{\mathrm{1}}{{n}}} \:\leqslant\:\frac{\mathrm{10}+\mathrm{3}{n}}{{n}},\:\forall{n}\in\mathbb{N}^{+} \geqslant\mathrm{1}. \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{na}\left({b}+\mathrm{4}\right)+\mathrm{3}{b}^{{n}} \:\geqslant\:\mathrm{10}{n}+\mathrm{3},\:\forall{n}\in\mathbb{N}^{+} \geqslant\mathrm{2}. \\ $$$$ \\ $$
Question Number 144261 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}. \\ $$
Question Number 144260 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number} \\ $$$${x}\:\mathrm{that}\:\mathrm{satisfy}\:\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\right)^{\mathrm{2}{x}−\mathrm{3}} =\mathrm{1} \\ $$
Question Number 144249 Answers: 2 Comments: 0
$$\left(\sqrt{\mathrm{5}\:+\:\mathrm{2}\sqrt{\mathrm{6}}}\right)^{\boldsymbol{{z}}} \:+\:\left(\sqrt{\mathrm{5}\:-\:\mathrm{2}\sqrt{\mathrm{6}}}\right)^{\boldsymbol{{z}}} \:=\:\mathrm{10} \\ $$$${Find}:\:\boldsymbol{{z}}=? \\ $$
Question Number 144248 Answers: 1 Comments: 0
Question Number 144246 Answers: 1 Comments: 0
$$\mathrm{A}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left[\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}\right)+\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{2}\right)+\mathrm{2}}\:+..+\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{2}}\right] \\ $$
Question Number 144245 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}{n}} }{\left({x}−\mathrm{1}\right)^{{n}} }{dx} \\ $$
Question Number 144244 Answers: 1 Comments: 0
$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{5tan}^{\mathrm{4}} \mathrm{x}+\mathrm{3cot}^{\mathrm{4}} \mathrm{x}}{\mathrm{tan}^{\mathrm{4}} \mathrm{x}+\mathrm{cot}^{\mathrm{4}} \mathrm{x}}\mathrm{dx}=? \\ $$
Question Number 144241 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\mathrm{4}\pi} \:\frac{\mathrm{dx}}{\left(\mathrm{2}+\mathrm{cosx}\right)^{\mathrm{2}} } \\ $$
Question Number 144237 Answers: 2 Comments: 0
Question Number 144234 Answers: 1 Comments: 0
$$\int\:\frac{\sqrt{{x}^{\mathrm{2}} \:-\:{x}}}{{x}^{\mathrm{3}} }\:{dx}\:=\:? \\ $$
Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658
Terms of Service
Privacy Policy
Contact: info@tinkutara.com