Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 654
Question Number 146799 Answers: 1 Comments: 0
Question Number 146791 Answers: 1 Comments: 0
$$\int\frac{\mathrm{x}}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx} \\ $$
Question Number 146790 Answers: 1 Comments: 0
$$\int\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \mathrm{dx} \\ $$
Question Number 146784 Answers: 2 Comments: 2
Question Number 146782 Answers: 1 Comments: 0
$${Find}\:{the}\:{modulus}\:{of}\:{a}\:{complex} \\ $$$${number}: \\ $$$${Z}\:=\:{cos}\:\mathrm{40}\:+\:{i}\:{sin}\:\mathrm{40}\:+\mathrm{1}\:=\:? \\ $$
Question Number 146780 Answers: 1 Comments: 0
$${find}\:{by}\:{residue}\:\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{d}\theta}{\mathrm{1}+{ksin}\theta}\:\:\:,\mathrm{0}<{k}<\mathrm{1} \\ $$
Question Number 146778 Answers: 1 Comments: 0
$${Find}\:{the}\:{modulus}\:{of}\:{a}\:{complex} \\ $$$${number}: \\ $$$${Z}\:=\:{cos}\:\mathrm{40}\:+\:{i}\:{sin}\:\mathrm{20}\:+\:\mathrm{1}\:=\:? \\ $$
Question Number 146776 Answers: 0 Comments: 2
Question Number 146775 Answers: 3 Comments: 0
$$\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}}\: \\ $$$$\:\:\underset{\:\mathrm{0}} {\int}^{\:\boldsymbol{\pi}} \boldsymbol{{tln}}\left(\boldsymbol{{sint}}\right)\boldsymbol{{dt}}=\:−\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{2}}\boldsymbol{{ln}}\left(\mathrm{2}\right) \\ $$
Question Number 146793 Answers: 1 Comments: 0
$$\forall{n}\geqslant\mathrm{2},\:{u}_{{n}} =\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:{et}\:{v}_{{n}} ={u}_{{n}} \mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right) \\ $$$${convergence},\:{nature},\:{sens}\:{of}\:{variations}\:{and}\:{adjantes}? \\ $$$${u}_{{n}} \:{and}\:{v}_{{n}} \\ $$$${help}\:{me}\:{please} \\ $$
Question Number 146772 Answers: 1 Comments: 0
$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{6cos}\:\mathrm{4}\theta+\mathrm{15cos}\:\mathrm{2}\theta+\mathrm{10}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{a}} \sqrt{\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dx}. \\ $$
Question Number 146771 Answers: 1 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{y}''−\mathrm{4}{y}'+\mathrm{3}{y}=\mathrm{0},\:{y}\left(\mathrm{0}\right)=\mathrm{0},\:{y}'\left(\mathrm{0}\right)=\mathrm{2}, \\ $$$$\mathrm{find}\:{y}\left(\mathrm{ln}\:\mathrm{2}\right). \\ $$
Question Number 146767 Answers: 1 Comments: 0
$$\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{n}+\mathrm{1}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\right)=? \\ $$
Question Number 146764 Answers: 0 Comments: 0
$$\mathrm{A}=\left(\frac{\left(\mathrm{x}+\sqrt[{\mathrm{3}}]{\mathrm{2ax}^{\mathrm{2}} }\right)\left(\mathrm{2a}+\sqrt[{\mathrm{3}}]{\mathrm{2a}^{\mathrm{2}} \mathrm{x}}\right)^{−\mathrm{1}} −\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}−\sqrt[{\mathrm{3}}]{\mathrm{2a}}}−\left(\mathrm{2a}\right)^{−\mathrm{1}/\mathrm{3}} \right)^{−\mathrm{6}} ,\:\left(\mathrm{a},\mathrm{b}\right)\in\mathbb{R}^{\mathrm{2}} \\ $$$$\mathrm{a}-\:\mathrm{A}=\frac{\mathrm{16a}^{\mathrm{4}} }{\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}-\:\mathrm{A}=\frac{\mathrm{8}}{\mathrm{ax}}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}-\mathrm{A}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2a}}}{\mathrm{3x}^{\mathrm{3}} } \\ $$
Question Number 146761 Answers: 1 Comments: 1
$${Solve}\:{the}\:{partial}\:{defferintial}\:{equation} \\ $$$${u}_{{t}} ={a}^{\mathrm{2}} {u}_{{xx}} \:\:\:,\mathrm{0}<{x}<{L}\:,{t}>\mathrm{0} \\ $$$$ \\ $$$${u}\left(\mathrm{0},{t}\right)=\mathrm{0}\:\:{and}\:{u}\left({L},{t}\right)=\mathrm{0}\:\:{and}\:{u}_{{x}} \left({x},\mathrm{0}\right)={f}\left({x}\right) \\ $$
Question Number 146758 Answers: 2 Comments: 0
$${find}\:{forier}\:{series}\:{to}\:{half}\:{rang}\:{of}\: \\ $$$${f}\left({x}\right)={sinx}\:\:,\mathrm{0}<{x}<\pi\:{and}\:{prove}\:{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Question Number 146756 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{t}^{\mathrm{2}} \:+\:\mathrm{1}\:{dt} \\ $$
Question Number 146755 Answers: 0 Comments: 0
$$\underset{{p}\rightarrow+\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{p}−\mathrm{1}} {\sum}}\frac{\mathrm{2}}{{k}^{\mathrm{2}} \left({p}−{k}\right)^{\mathrm{2}} }=...? \\ $$
Question Number 146752 Answers: 1 Comments: 0
$$ \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:{t}^{\mathrm{2}} +\:\frac{\mathrm{1}}{\mathrm{2}}{t}\:−\mathrm{6}{dx}\:\: \\ $$
Question Number 146746 Answers: 4 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{4}} {\int}}\:\sqrt{\mathrm{16}\:-\:{x}^{\mathrm{2}} }\:{dx}\:=\:? \\ $$
Question Number 146744 Answers: 1 Comments: 0
$${if}\:\:\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}{f}\left({x}\right){dx}\:=\:\mathrm{7}\:\:\:{and}\:\:\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}\mathrm{4}\:{g}\left({x}\right){dx}\:=\:−\mathrm{6} \\ $$$${find}\:\:\:\underset{\boldsymbol{{a}}} {\overset{\boldsymbol{{b}}} {\int}}\left(\mathrm{3}\:{f}\left({x}\right)−\mathrm{8}\:{g}\left({x}\right)\right)\:{dx}\:=\:? \\ $$
Question Number 146736 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathrm{1}:\:\:\:\:\mathrm{S}:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{{n}.\mathrm{2}^{\:{n}} }\:=? \\ $$$$\:\:\:\:\:\:\mathrm{2}:\:\:\:\:\mathrm{A}:=\:\Sigma\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{{n}^{\mathrm{2}} .\:\mathrm{2}^{\:{n}} }\:=? \\ $$
Question Number 146735 Answers: 2 Comments: 0
$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{n}}}{\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)}=? \\ $$
Question Number 146729 Answers: 0 Comments: 0
Question Number 146725 Answers: 2 Comments: 0
$${cos}\left({x}\right)\:\centerdot\:{cos}\left(\mathrm{3}{x}\right)\:=\:{cos}\left(\mathrm{5}{x}\right)\:\centerdot\:{cos}\left(\mathrm{7}{x}\right) \\ $$$$\Rightarrow\:{x}\:=\:? \\ $$
Question Number 146705 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{sin}\left(\mathrm{tan}\left(\mathrm{2x}\right)−\mathrm{x}\right)+\mathrm{1}−\mathrm{cos}\left(\pi\mathrm{x}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} } \\ $$
Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657 Pg 658
Terms of Service
Privacy Policy
Contact: info@tinkutara.com