Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 653

Question Number 154081    Answers: 1   Comments: 0

lim_(x→∞) ((32x^5 −14x^4 +3))^(1/5) −((128x^7 +6x^6 −1))^(1/7) =?

$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\mathrm{32}{x}^{\mathrm{5}} −\mathrm{14}{x}^{\mathrm{4}} +\mathrm{3}}−\sqrt[{\mathrm{7}}]{\mathrm{128}{x}^{\mathrm{7}} +\mathrm{6}{x}^{\mathrm{6}} −\mathrm{1}}\:=? \\ $$

Question Number 154080    Answers: 1   Comments: 0

Ω =∫_0 ^( (π/2)) ln^2 (((1+sin t)/(1−sin t)))dt

$$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$

Question Number 154078    Answers: 0   Comments: 1

Question Number 154068    Answers: 3   Comments: 3

Question Number 154065    Answers: 1   Comments: 0

Question Number 154064    Answers: 0   Comments: 0

Question Number 154062    Answers: 0   Comments: 0

Question Number 154059    Answers: 0   Comments: 0

Question Number 154058    Answers: 1   Comments: 0

Question Number 154052    Answers: 0   Comments: 0

Prove without any software ∫_( 2−(√3)) ^( 1) e^(−x^2 ) dx < (𝛑/6) and∫_( 1) ^( 2+(√3)) e^(−x^2 ) dx < (𝛑/6)

$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software} \\ $$$$\underset{\:\mathrm{2}−\sqrt{\mathrm{3}}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:<\:\frac{\boldsymbol{\pi}}{\mathrm{6}}\:\:\mathrm{and}\underset{\:\mathrm{1}} {\overset{\:\mathrm{2}+\sqrt{\mathrm{3}}} {\int}}\mathrm{e}^{−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:<\:\frac{\boldsymbol{\pi}}{\mathrm{6}} \\ $$

Question Number 154051    Answers: 0   Comments: 0

let a≠b ; b≠c and c≠a find the minimum value of S = ∣(a/(b-c))∣ + ∣(b/(c-a))∣ + ∣(c/(a-b))∣

$$\mathrm{let}\:\:\mathrm{a}\neq\mathrm{b}\:;\:\mathrm{b}\neq\mathrm{c}\:\mathrm{and}\:\mathrm{c}\neq\mathrm{a} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\boldsymbol{\mathrm{S}}\:=\:\mid\frac{\mathrm{a}}{\mathrm{b}-\mathrm{c}}\mid\:+\:\mid\frac{\mathrm{b}}{\mathrm{c}-\mathrm{a}}\mid\:+\:\mid\frac{\mathrm{c}}{\mathrm{a}-\mathrm{b}}\mid \\ $$

Question Number 154045    Answers: 2   Comments: 1

lim_(n→∞) (((Σ_(k=1) ^n (k^2 /(2k^2 −2nk+n^2 )))(Σ_(k=1) ^n (k^2 /(3k^2 −3nk+n^2 )))))^(1/n) =?

$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{{n}}]{\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{k}^{\mathrm{2}} }{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{2}{nk}+{n}^{\mathrm{2}} }\right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{k}^{\mathrm{2}} }{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{3}{nk}+{n}^{\mathrm{2}} }\right)}\:=? \\ $$

Question Number 154044    Answers: 0   Comments: 0

Question Number 154038    Answers: 0   Comments: 1

monster integral ∫_(−∞) ^( ∞) sin(x^2 )cos(x^3 ) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{monster}\:\mathrm{integral} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$

Question Number 154037    Answers: 0   Comments: 0

Prove:: Σ_(n=−∞) ^(+∞) arctan (((sinh x)/(cosh n)))=πx

$$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}=−\infty} {\overset{+\infty} {\sum}}\mathrm{arctan}\:\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{cosh}\:\mathrm{n}}\right)=\pi\mathrm{x} \\ $$

Question Number 154036    Answers: 3   Comments: 0

49(((x+5)/(x−2)))^2 +36(((x+5)/(x−1)))^2 = 85

$$\:\mathrm{49}\left(\frac{{x}+\mathrm{5}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{36}\left(\frac{{x}+\mathrm{5}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} =\:\mathrm{85} \\ $$

Question Number 154034    Answers: 1   Comments: 0

prove that n+x=(√(n^2 +x(√(n^2 +(x+n)(√(n^2 +(x+2n)(√(n^2 …)))))))) Ramanujan′s nested radikal

$${prove}\:{that}\: \\ $$$${n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\sqrt{{n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\sqrt{{n}^{\mathrm{2}} \ldots}}}} \\ $$$${Ramanujan}'{s}\:{nested}\:{radikal} \\ $$

Question Number 154022    Answers: 0   Comments: 0

An ANSWER on this forum is LUCKY if it receives a FEED BACK from the QUESTIONER!

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{An}\:\mathbb{ANSWER}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{is}\:\:\mathbb{LUCKY} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{if}\:\mathrm{it}\:\mathrm{receives}\:\mathrm{a}\:\mathbb{FEED}\:\mathbb{BACK} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{from}\:\mathrm{the}\:\mathbb{QUESTIONER}! \\ $$$$ \\ $$

Question Number 154020    Answers: 2   Comments: 7

Question Number 154019    Answers: 0   Comments: 0

Question Number 154018    Answers: 0   Comments: 0

Question Number 154017    Answers: 0   Comments: 0

Question Number 154015    Answers: 0   Comments: 0

If x;y;z>0 then prove that: (x/(x^2 +yz)) + (y/(y^2 +zx)) + (z/(z^2 +xy)) ≤ ((x^2 +y^2 +z^2 )/(2xyz))

$$\mathrm{If}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{yz}}\:+\:\frac{\mathrm{y}}{\mathrm{y}^{\mathrm{2}} +\mathrm{zx}}\:+\:\frac{\mathrm{z}}{\mathrm{z}^{\mathrm{2}} +\mathrm{xy}}\:\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} }{\mathrm{2xyz}} \\ $$

Question Number 154013    Answers: 0   Comments: 0

Prove without any software ∫_( (1/2)) ^( ((√3)/2)) (1/x) log(1+2x^2 +x^4 )dx < (√7) - (√5)

$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software} \\ $$$$\underset{\:\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} {\int}}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{log}\left(\mathrm{1}+\mathrm{2x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \right)\mathrm{dx}\:<\:\sqrt{\mathrm{7}}\:-\:\sqrt{\mathrm{5}} \\ $$

Question Number 154012    Answers: 1   Comments: 2

Determine all the perfect squares on form p^n + 1 where p is a prime number and n a positive integer.

$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{the}\:\mathrm{perfect}\:\mathrm{squares}\:\mathrm{on} \\ $$$$\mathrm{form}\:\:\boldsymbol{\mathrm{p}}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{1}\:\:\mathrm{where}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\mathrm{and}\:\:\boldsymbol{\mathrm{n}}\:\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}. \\ $$

Question Number 154011    Answers: 0   Comments: 4

Ω =∫_( 0) ^( (𝛑/(12))) x(tanx + cotx) dx = ?

$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{12}}} {\int}}\mathrm{x}\left(\mathrm{tan}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cot}\boldsymbol{\mathrm{x}}\right)\:\mathrm{dx}\:=\:? \\ $$

  Pg 648      Pg 649      Pg 650      Pg 651      Pg 652      Pg 653      Pg 654      Pg 655      Pg 656      Pg 657   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com