Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 653
Question Number 154081 Answers: 1 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\mathrm{32}{x}^{\mathrm{5}} −\mathrm{14}{x}^{\mathrm{4}} +\mathrm{3}}−\sqrt[{\mathrm{7}}]{\mathrm{128}{x}^{\mathrm{7}} +\mathrm{6}{x}^{\mathrm{6}} −\mathrm{1}}\:=? \\ $$
Question Number 154080 Answers: 1 Comments: 0
$$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$
Question Number 154078 Answers: 0 Comments: 1
Question Number 154068 Answers: 3 Comments: 3
Question Number 154065 Answers: 1 Comments: 0
Question Number 154064 Answers: 0 Comments: 0
Question Number 154062 Answers: 0 Comments: 0
Question Number 154059 Answers: 0 Comments: 0
Question Number 154058 Answers: 1 Comments: 0
Question Number 154052 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software} \\ $$$$\underset{\:\mathrm{2}−\sqrt{\mathrm{3}}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:<\:\frac{\boldsymbol{\pi}}{\mathrm{6}}\:\:\mathrm{and}\underset{\:\mathrm{1}} {\overset{\:\mathrm{2}+\sqrt{\mathrm{3}}} {\int}}\mathrm{e}^{−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \:\mathrm{dx}\:<\:\frac{\boldsymbol{\pi}}{\mathrm{6}} \\ $$
Question Number 154051 Answers: 0 Comments: 0
$$\mathrm{let}\:\:\mathrm{a}\neq\mathrm{b}\:;\:\mathrm{b}\neq\mathrm{c}\:\mathrm{and}\:\mathrm{c}\neq\mathrm{a} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\boldsymbol{\mathrm{S}}\:=\:\mid\frac{\mathrm{a}}{\mathrm{b}-\mathrm{c}}\mid\:+\:\mid\frac{\mathrm{b}}{\mathrm{c}-\mathrm{a}}\mid\:+\:\mid\frac{\mathrm{c}}{\mathrm{a}-\mathrm{b}}\mid \\ $$
Question Number 154045 Answers: 2 Comments: 1
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{{n}}]{\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{k}^{\mathrm{2}} }{\mathrm{2}{k}^{\mathrm{2}} −\mathrm{2}{nk}+{n}^{\mathrm{2}} }\right)\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{k}^{\mathrm{2}} }{\mathrm{3}{k}^{\mathrm{2}} −\mathrm{3}{nk}+{n}^{\mathrm{2}} }\right)}\:=? \\ $$
Question Number 154044 Answers: 0 Comments: 0
Question Number 154038 Answers: 0 Comments: 1
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{monster}\:\mathrm{integral} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)\:{dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 154037 Answers: 0 Comments: 0
$$\mathrm{Prove}::\:\:\:\underset{\mathrm{n}=−\infty} {\overset{+\infty} {\sum}}\mathrm{arctan}\:\left(\frac{\mathrm{sinh}\:\mathrm{x}}{\mathrm{cosh}\:\mathrm{n}}\right)=\pi\mathrm{x} \\ $$
Question Number 154036 Answers: 3 Comments: 0
$$\:\mathrm{49}\left(\frac{{x}+\mathrm{5}}{{x}−\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{36}\left(\frac{{x}+\mathrm{5}}{{x}−\mathrm{1}}\right)^{\mathrm{2}} =\:\mathrm{85} \\ $$
Question Number 154034 Answers: 1 Comments: 0
$${prove}\:{that}\: \\ $$$${n}+{x}=\sqrt{{n}^{\mathrm{2}} +{x}\sqrt{{n}^{\mathrm{2}} +\left({x}+{n}\right)\sqrt{{n}^{\mathrm{2}} +\left({x}+\mathrm{2}{n}\right)\sqrt{{n}^{\mathrm{2}} \ldots}}}} \\ $$$${Ramanujan}'{s}\:{nested}\:{radikal} \\ $$
Question Number 154022 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{An}\:\mathbb{ANSWER}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{is}\:\:\mathbb{LUCKY} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{if}\:\mathrm{it}\:\mathrm{receives}\:\mathrm{a}\:\mathbb{FEED}\:\mathbb{BACK} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{from}\:\mathrm{the}\:\mathbb{QUESTIONER}! \\ $$$$ \\ $$
Question Number 154020 Answers: 2 Comments: 7
Question Number 154019 Answers: 0 Comments: 0
Question Number 154018 Answers: 0 Comments: 0
Question Number 154017 Answers: 0 Comments: 0
Question Number 154015 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{yz}}\:+\:\frac{\mathrm{y}}{\mathrm{y}^{\mathrm{2}} +\mathrm{zx}}\:+\:\frac{\mathrm{z}}{\mathrm{z}^{\mathrm{2}} +\mathrm{xy}}\:\leqslant\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} }{\mathrm{2xyz}} \\ $$
Question Number 154013 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software} \\ $$$$\underset{\:\frac{\mathrm{1}}{\mathrm{2}}} {\overset{\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} {\int}}\:\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{log}\left(\mathrm{1}+\mathrm{2x}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \right)\mathrm{dx}\:<\:\sqrt{\mathrm{7}}\:-\:\sqrt{\mathrm{5}} \\ $$
Question Number 154012 Answers: 1 Comments: 2
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{the}\:\mathrm{perfect}\:\mathrm{squares}\:\mathrm{on} \\ $$$$\mathrm{form}\:\:\boldsymbol{\mathrm{p}}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{1}\:\:\mathrm{where}\:\:\boldsymbol{\mathrm{p}}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{prime}\:\mathrm{number} \\ $$$$\mathrm{and}\:\:\boldsymbol{\mathrm{n}}\:\:\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}. \\ $$
Question Number 154011 Answers: 0 Comments: 4
$$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\frac{\boldsymbol{\pi}}{\mathrm{12}}} {\int}}\mathrm{x}\left(\mathrm{tan}\boldsymbol{\mathrm{x}}\:+\:\mathrm{cot}\boldsymbol{\mathrm{x}}\right)\:\mathrm{dx}\:=\:? \\ $$
Pg 648 Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656 Pg 657
Terms of Service
Privacy Policy
Contact: info@tinkutara.com