Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 652
Question Number 146960 Answers: 2 Comments: 0
Question Number 146959 Answers: 1 Comments: 0
$$\int{ln}\left(\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\right){dx} \\ $$
Question Number 147764 Answers: 1 Comments: 0
Question Number 146943 Answers: 3 Comments: 0
$${b}_{\boldsymbol{{n}}+\mathrm{2}} \:\centerdot\:{b}_{\boldsymbol{{n}}+\mathrm{3}} \:\centerdot\:{b}_{\boldsymbol{{n}}+\mathrm{4}} \:=\:\mathrm{3}^{\mathrm{3}\boldsymbol{{n}}+\mathrm{3}} \\ $$$${geometric}\:{series}\:\:\boldsymbol{{b}}_{\mathrm{8}} \:=\:? \\ $$
Question Number 146938 Answers: 0 Comments: 0
Question Number 146936 Answers: 3 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +{xy}=\mathrm{37}}\\{{y}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}=\mathrm{26}}\end{cases}\:\Rightarrow\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =? \\ $$
Question Number 146933 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....#\:{advanced}\:\:{calculu}#...... \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{−\infty} ^{\:+\infty} {sin}\left({cosh}\left({x}\right).{cos}\left({sinhx}\right)\right){dx}=? \\ $$$$\:\:\:\:\:....{solution}\:.... \\ $$$$\:\:\:\:\:\:\:\mathrm{I}:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{\:+\infty} \left\{{sin}\:\left({cosh}\left({x}\right)+{sinh}\left({x}\right)\right)+{sin}\left({cosh}\left({x}\right)−{sinh}\:\left({x}\right)\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\::\underset{{sinh}\left({x}\right)=\frac{{e}^{\:{x}} −{e}^{\:−{x}} }{\mathrm{2}}} {\overset{{cosh}\left({x}\right)=\frac{{e}^{\:{x}} +{e}^{\:−{x}} }{\mathrm{2}}} {=}}\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{\:+\infty} \left\{{sin}\left({e}^{{x}} \right)+{sin}\:\left({e}^{\:−{x}} \right)\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\::=\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{\:\infty} {sin}\left({e}^{\:{x}} \right){dx}\:+\left[\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{\:+\infty} {sin}\left({e}^{\:{x}} \right){dx}\:::\:\:{x}\overset{{sub}} {=}−{x}\right] \\ $$$$\:\:\:\:\:\:\:\::=\:\int_{−\infty} ^{\:+\infty} {sin}\left({e}^{\:{x}} \:\right)\:{dx}\:\overset{{e}^{\:{x}} ={y}} {=}\:\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right)}{{t}}\:{dt}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\:\mathrm{I}:=\:\frac{\pi}{\mathrm{2}}\:..... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$\: \\ $$$$ \\ $$
Question Number 146929 Answers: 1 Comments: 5
Question Number 146927 Answers: 1 Comments: 0
Question Number 146926 Answers: 1 Comments: 0
Question Number 146924 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{Montrer}}\:\boldsymbol{\mathrm{que}} \\ $$$$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\mathrm{2}\boldsymbol{{n}}−\mathrm{1}} {\sum}}\boldsymbol{{cos}}^{\mathrm{2}\boldsymbol{{n}}} \left(\boldsymbol{\theta}+\frac{\boldsymbol{{k}\pi}}{\mathrm{2}\boldsymbol{{n}}}\right)=\:\frac{\boldsymbol{{nC}}_{\mathrm{2}\boldsymbol{{n}}} ^{\boldsymbol{{n}}} }{\mathrm{2}^{\mathrm{2}\boldsymbol{{n}}−\mathrm{1}} } \\ $$
Question Number 146923 Answers: 1 Comments: 0
$${if}\:\:\:\:{arg}\:\left(\frac{{i}\:-\:{z}}{{i}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$$${find}\:\:\:\:{RemZ}\:+\:{ImZ}\:=\:? \\ $$
Question Number 146914 Answers: 2 Comments: 0
$$\mid{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\mid\:=\:\mid{x}−\mathrm{4}\mid\:\Rightarrow\:{x}=? \\ $$
Question Number 146913 Answers: 1 Comments: 0
$${ax}={by}={cz}=\frac{\mathrm{2}}{\mathrm{3}}\:{and}\:{ab}+{bc}+{ac}=\mathrm{36}{abc} \\ $$$${find}\:\:{x}+{y}+{z}=? \\ $$
Question Number 146906 Answers: 0 Comments: 0
Question Number 147078 Answers: 0 Comments: 1
Question Number 146904 Answers: 0 Comments: 0
$$\boldsymbol{\mathrm{F}}\:=\:\frac{\boldsymbol{\mathrm{Gm}}_{\mathrm{1}} \boldsymbol{\mathrm{m}}_{\mathrm{2}} }{\boldsymbol{\mathrm{r}}^{\mathrm{2}} } \\ $$$$\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{r}}\:\:\boldsymbol{\mathrm{with}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{following}}\: \\ $$$$\boldsymbol{\mathrm{equation}}. \\ $$
Question Number 146902 Answers: 1 Comments: 0
$$\mathrm{let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{roots}\:\mathrm{of}\:\:\mathrm{z}^{\mathrm{2}} +\mathrm{3z}+\mathrm{5}=\mathrm{0} \\ $$$$\mathrm{simlify}\:\mathrm{U}_{\mathrm{n}} =\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\left(\alpha^{\mathrm{k}} \:+\beta^{\mathrm{k}} \right) \\ $$$$\mathrm{and}\:\mathrm{V}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\left(\frac{\mathrm{1}}{\alpha^{\mathrm{k}} }+\frac{\mathrm{1}}{\beta^{\mathrm{k}} }\right) \\ $$
Question Number 146901 Answers: 1 Comments: 0
$$\mathrm{g}\left(\mathrm{x}\right)=\mathrm{cos}\left(\mathrm{2arcsinx}\right)\:\: \\ $$$$\mathrm{calculate}\:\frac{\mathrm{dg}}{\mathrm{dx}}\:\mathrm{and}\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{g}}{\mathrm{dx}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\mathrm{find}\:\int_{−\frac{\mathrm{1}}{\mathrm{2}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{g}\left(\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 146899 Answers: 1 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}^{\mathrm{5}} \mathrm{x}\:\:\:\mathrm{calculate}\:\mathrm{f}^{\left(\mathrm{5}\right)} \left(\frac{\pi}{\mathrm{2}}\right) \\ $$
Question Number 146898 Answers: 2 Comments: 0
$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{cosx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{3}\right)}\mathrm{dx} \\ $$
Question Number 146896 Answers: 2 Comments: 0
$$\frac{\mathrm{5}}{\:\sqrt[{\mathrm{8}}]{\mathrm{6}}\:+\:\mathrm{1}}\:\centerdot\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{4}}]{\mathrm{6}}\:+\:\mathrm{1}}\:\centerdot\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}\:+\:\mathrm{1}}\:+\:\mathrm{1}\:=\:? \\ $$
Question Number 146895 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{2}\:+\:\boldsymbol{{log}}_{\mathrm{3}} \left(\mathrm{25}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{2}\:+\:\boldsymbol{{log}}_{\mathrm{5}} \left(\mathrm{9}\right)}\:=\:? \\ $$
Question Number 146886 Answers: 1 Comments: 1
Question Number 146878 Answers: 0 Comments: 0
$${in}\:\Delta{ABC}\:{if}\:\mathrm{sin}\:^{\mathrm{2}} {A}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}+ \\ $$$$\mathrm{cos}\:{B}\mathrm{cos}\:{C}=\mathrm{1}\:{then}\:{the}\:{triangle}\:{is} \\ $$
Question Number 146877 Answers: 0 Comments: 0
$${if}\:{the}\:{sides}\:{a},{b},{c}\:{of}\:{a}\:{triangle}\:{ABC} \\ $$$${are}\:{in}\:{A}.{P}.\:{and}\:{if}\: \\ $$$$\mathrm{sin}\:{A}\:=\left(\mathrm{sin}\:{B}\:+\mathrm{sin}\:{C}\right)\mathrm{cos}\:\alpha \\ $$$$\mathrm{sin}\:{B}\:=\left(\mathrm{sin}\:{C}+\mathrm{sin}\:{A}\right)\mathrm{cos}\:\beta \\ $$$$\mathrm{sin}\:{C}\:=\left(\mathrm{sin}\:{A}\:+\mathrm{sin}\:{B}\right)\mathrm{cos}\:\gamma \\ $$$${then}\:{find}\:{the}\:{value}\:{of} \\ $$$$\:\mathrm{tan}\:^{\mathrm{2}} \frac{\alpha}{\mathrm{2}}+\mathrm{tan}\:^{\mathrm{2}} \frac{\gamma}{\mathrm{2}} \\ $$
Pg 647 Pg 648 Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654 Pg 655 Pg 656
Terms of Service
Privacy Policy
Contact: info@tinkutara.com