Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 651

Question Number 147071    Answers: 1   Comments: 0

prove that (√(1+(√(1+(√(1+(√(1+...)))))))) = 1+(1/(1+(1/(1+(1/(1+⋱))))))

$${prove}\:{that} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+...}}}}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}+\ddots}}} \\ $$

Question Number 147068    Answers: 1   Comments: 0

find laplase transforme of e^((t−1)^2 )

$${find}\:{laplase}\:{transforme}\:{of}\:{e}^{\left({t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 147066    Answers: 3   Comments: 0

find laurant series lf (1)f(z)=(1/(z−1))+(1/(z+2)) ,∣z∣>1 (2)f(z)=(1/(z−2))−(2/(z−3)) ,∣z∣<3

$${find}\:{laurant}\:{series}\:{lf} \\ $$$$ \\ $$$$\:\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{1}}+\frac{\mathrm{1}}{{z}+\mathrm{2}}\:\:,\mid{z}\mid>\mathrm{1} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{z}−\mathrm{2}}−\frac{\mathrm{2}}{{z}−\mathrm{3}}\:\:,\mid{z}\mid<\mathrm{3} \\ $$

Question Number 147061    Answers: 2   Comments: 0

∫_( 0 ) ^( ∞) (x^a /((1+x^3 ))) (dx/x) =? 0<a<3

$$\:\:\:\:\:\int_{\:\mathrm{0}\:} ^{\:\infty} \:\frac{{x}^{{a}} }{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)}\:\frac{{dx}}{{x}}\:=?\: \\ $$$$\:\:\mathrm{0}<{a}<\mathrm{3}\:\: \\ $$

Question Number 147060    Answers: 1   Comments: 0

∫_0 ^(π/2) e^(2x) (√(tanx))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{\mathrm{2}{x}} \sqrt{{tanx}}{dx} \\ $$

Question Number 147035    Answers: 2   Comments: 0

using residue theorem evaluate ∫_(∣z∣=3) ((zsecz)/((z−1)^2 ))dz

$${using}\:{residue}\:{theorem} \\ $$$${evaluate}\:\:\int_{\mid{z}\mid=\mathrm{3}} \frac{{zsecz}}{\left({z}−\mathrm{1}\right)^{\mathrm{2}} }{dz} \\ $$

Question Number 147031    Answers: 5   Comments: 0

Question Number 147028    Answers: 0   Comments: 0

Question Number 147022    Answers: 0   Comments: 0

Question Number 147018    Answers: 1   Comments: 1

Question Number 147015    Answers: 0   Comments: 0

Question Number 147011    Answers: 2   Comments: 3

2x - (√(2x - 3)) - 9 = 0 if there′s a solution to equation, find 4a + 3 = ?

$$\mathrm{2}{x}\:-\:\sqrt{\mathrm{2}{x}\:-\:\mathrm{3}}\:-\:\mathrm{9}\:=\:\mathrm{0} \\ $$$${if}\:{there}'{s}\:\boldsymbol{{a}}\:{solution}\:{to}\:{equation}, \\ $$$${find}\:\:\mathrm{4}\boldsymbol{{a}}\:+\:\mathrm{3}\:=\:? \\ $$

Question Number 147010    Answers: 1   Comments: 1

if the radius of a circle touching parabola y^2 =4x at (4,4)and having directrix of y^2 =4x as its normal is r, then find [r]? (where [x] denote greatest integer lessthan or equal to x)

$${if}\:{the}\:{radius}\:{of}\:{a}\:{circle}\:{touching}\: \\ $$$${parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:\:{at}\:\left(\mathrm{4},\mathrm{4}\right){and}\:{having} \\ $$$${directrix}\:{of}\:{y}^{\mathrm{2}} =\mathrm{4}{x}\:{as}\:{its}\:{normal}\: \\ $$$${is}\:{r},\:{then}\:{find}\:\left[{r}\right]? \\ $$$$\left({where}\:\left[{x}\right]\:{denote}\:{greatest}\:{integer}\:\right. \\ $$$$\left.{lessthan}\:{or}\:{equal}\:{to}\:{x}\right) \\ $$

Question Number 147009    Answers: 1   Comments: 0

a parabola y=x^2 −15x+36 cuts the x axis at P and Q. a circle is drawn through P and Q so that the origin is outside it. then find the length of tangent to the circle from (0,0)?

$${a}\:{parabola}\:{y}={x}^{\mathrm{2}} −\mathrm{15}{x}+\mathrm{36}\:{cuts}\:{the}\: \\ $$$${x}\:{axis}\:{at}\:{P}\:\:{and}\:{Q}.\:{a}\:{circle}\:{is}\:{drawn} \\ $$$${through}\:{P}\:{and}\:{Q}\:{so}\:{that}\:{the}\:{origin} \\ $$$${is}\:{outside}\:{it}.\:{then}\:{find}\:{the}\:{length}\: \\ $$$${of}\:{tangent}\:{to}\:{the}\:{circle}\:{from}\:\left(\mathrm{0},\mathrm{0}\right)? \\ $$

Question Number 147006    Answers: 1   Comments: 0

find I_n =∫_0 ^∞ (dx/((x^2 +1)(x^2 +2)......(x^2 +n)))

$$\mathrm{find}\:\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{2}\right)......\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{n}\right)} \\ $$

Question Number 146996    Answers: 1   Comments: 0

∫ln(cht)dt

$$\int{ln}\left({cht}\right){dt} \\ $$

Question Number 146994    Answers: 3   Comments: 0

u_n =cos(√(n+1))−cos(√n) lim_(x→+∞) u_n =??

$${u}_{{n}} ={cos}\sqrt{{n}+\mathrm{1}}−{cos}\sqrt{{n}} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}{u}_{{n}} =?? \\ $$

Question Number 146989    Answers: 1   Comments: 2

Simplify: ((x^(1/2) + y^(1/2) )/(x^(1/6) + y^(1/6) )) - ((x^(1/2) - y^(1/2) )/(x^(1/6) - y^(1/6) )) = ?

$${Simplify}: \\ $$$$\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:{y}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:+\:{y}^{\frac{\mathrm{1}}{\mathrm{6}}} }\:\:-\:\:\frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:-\:{y}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\frac{\mathrm{1}}{\mathrm{6}}} \:-\:{y}^{\frac{\mathrm{1}}{\mathrm{6}}} }\:=\:? \\ $$

Question Number 146988    Answers: 0   Comments: 3

if ((z^2 + 4)/(z - 2i)) = −5 + 10i find Re(Z) + Im(Z) = ?

$${if}\:\:\:\frac{\boldsymbol{{z}}^{\mathrm{2}} \:+\:\mathrm{4}}{\boldsymbol{{z}}\:-\:\mathrm{2}\boldsymbol{{i}}}\:=\:−\mathrm{5}\:+\:\mathrm{10}\boldsymbol{{i}} \\ $$$${find}\:\:\:{Re}\left({Z}\right)\:+\:{Im}\left({Z}\right)\:=\:? \\ $$

Question Number 146987    Answers: 1   Comments: 0

Question Number 146979    Answers: 1   Comments: 1

If there just were 0,±1,±2,±3,±4,±i in place of the decimal or binary equivalets..

$${If}\:{there}\:{just}\:{were} \\ $$$$\:\:\mathrm{0},\pm\mathrm{1},\pm\mathrm{2},\pm\mathrm{3},\pm\mathrm{4},\pm{i} \\ $$$${in}\:{place}\:{of}\:{the}\:{decimal}\:{or} \\ $$$${binary}\:{equivalets}.. \\ $$

Question Number 146977    Answers: 2   Comments: 0

find (1) ∫_C (e^z^2 /(z^2 +4z+3))dz ,C:∣z−2∣=5 (2)∫_(−∞) ^( ∞) ((cosx)/(x^2 +2x+2))dx

$${find} \\ $$$$\left(\mathrm{1}\right)\:\int_{{C}} \:\frac{{e}^{{z}^{\mathrm{2}} } }{{z}^{\mathrm{2}} +\mathrm{4}{z}+\mathrm{3}}{dz}\:\:,{C}:\mid{z}−\mathrm{2}\mid=\mathrm{5} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\int_{−\infty} ^{\:\infty} \frac{{cosx}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}}{dx} \\ $$

Question Number 146975    Answers: 1   Comments: 0

find laurant series f(z)=((z^2 −2z+3)/(z−2)) ,∣z−1∣>1

$${find}\:{laurant}\:{series}\:{f}\left({z}\right)=\frac{{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{3}}{{z}−\mathrm{2}}\:,\mid{z}−\mathrm{1}\mid>\mathrm{1} \\ $$

Question Number 146964    Answers: 1   Comments: 0

Simplify: (((√2) ∙ (√(2 + (√2))) ∙ (√(2 - (√2))))/( (√(2(√2))))) = ?

$${Simplify}: \\ $$$$\frac{\sqrt{\mathrm{2}}\:\centerdot\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}}}\:\centerdot\:\sqrt{\mathrm{2}\:-\:\sqrt{\mathrm{2}}}}{\:\sqrt{\mathrm{2}\sqrt{\mathrm{2}}}}\:=\:? \\ $$

Question Number 146962    Answers: 1   Comments: 0

Question Number 146961    Answers: 1   Comments: 0

(√(sin(x))) ∙ cos(x) < 0

$$\sqrt{{sin}\left({x}\right)}\:\centerdot\:{cos}\left({x}\right)\:<\:\mathrm{0} \\ $$

  Pg 646      Pg 647      Pg 648      Pg 649      Pg 650      Pg 651      Pg 652      Pg 653      Pg 654      Pg 655   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com