Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 650
Question Number 144699 Answers: 3 Comments: 0
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{log}\left(\mathrm{cht}\right) \\ $$$$\mathrm{developp}\:\mathrm{f}\:\mathrm{at}\:\mathrm{fourier}\:\mathrm{serie} \\ $$
Question Number 144697 Answers: 2 Comments: 0
$$\mathrm{Evaluate}\:\left(\frac{\mathrm{1}+\mathrm{cos}\:\frac{\pi}{\mathrm{10}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{10}}}{\mathrm{1}+\mathrm{cos}\:\frac{\pi}{\mathrm{10}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{10}}}\right)^{\mathrm{15}} . \\ $$
Question Number 144693 Answers: 1 Comments: 0
Question Number 144691 Answers: 1 Comments: 0
Question Number 144684 Answers: 1 Comments: 0
$$ \\ $$
Question Number 144683 Answers: 1 Comments: 0
$${Determiner}\:{l}'{original}\:{de}\:{laplace} \\ $$$${F}\left({p}\right)=\frac{\mathrm{1}}{\left({p}^{\mathrm{2}} +{p}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 144682 Answers: 1 Comments: 0
$${Compare}:\:\:{x}=\frac{{sin}\left(\mathrm{3}\right)}{{sin}\left(\mathrm{5}\right)}\:\:{and}\:\:{y}=\frac{{cos}\left(\mathrm{3}\right)}{{cos}\left(\mathrm{5}\right)} \\ $$
Question Number 144663 Answers: 1 Comments: 0
$${x}\in\left(\mathrm{0};\pi\right)\:{and}\:\left({a};{b}\right)\:{real}\:{numbers}\:{fixed}. \\ $$$${Find}\:{the}\:{range}\:{of}\:{function}: \\ $$$${g}\left({x}\right)=\:\frac{\left(\mathrm{1}+{a}^{\mathrm{2}} +{cot}^{\mathrm{2}} {x}\right)\centerdot\left(\mathrm{1}+{b}^{\mathrm{2}} +{cot}^{\mathrm{2}} {x}\right)}{\mathrm{1}\:+\:{cot}^{\mathrm{2}} {x}} \\ $$
Question Number 144662 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:...........\:\:\mathrm{Calculus}........... \\ $$$$\:\mathrm{In}\:\:\mathrm{A}\overset{\Delta} {\mathrm{B}C}\:\:: \\ $$$$\hat {\mathrm{B}}\:=\:\mathrm{2}\:\hat {\mathrm{C}}\:\:\:\:,\:\:{a}\:\:=\:\lambda\:{b}\:\:\:{then}\:{specify} \\ $$$$\:{the}\:\:{limits}\:{of}\:{the}\:{changes}\:\:\:'\:\:\lambda\:\:'\:\:: \\ $$$$\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 144676 Answers: 1 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}+\frac{{b}}{{ca}}\:\geqslant\:\frac{\mathrm{27}}{\mathrm{8}} \\ $$$$\left(\mathrm{Found}\:\mathrm{by}\:\mathrm{WolframAlpha}\right) \\ $$
Question Number 144645 Answers: 2 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\left(\frac{\mathrm{1}\:+\:{tanx}}{\mathrm{1}\:+\:{sinx}}\right)^{\frac{\mathrm{1}}{\boldsymbol{{sinx}}}} =\:? \\ $$
Question Number 144639 Answers: 0 Comments: 0
Question Number 144638 Answers: 1 Comments: 0
$$\mathrm{Triangle}\:\mathrm{AOC}\:\mathrm{inscribed} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{region}\:\mathrm{cut}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{parabola}\:\mathrm{y}=\mathrm{x}^{\mathrm{2}} \:\mathrm{by}\:\mathrm{the} \\ $$$$\mathrm{line}\:\mathrm{y}=\mathrm{a}^{\mathrm{2}} \:.\mathrm{Find}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\mathrm{of}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangle}\:\mathrm{to}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{parabolic}\:\mathrm{region}\:\mathrm{as}\:\mathrm{a}\:\mathrm{approaches} \\ $$$$\mathrm{zero}\: \\ $$
Question Number 144636 Answers: 1 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{regions} \\ $$$$\:\:\mathrm{enclosed}\:\mathrm{by}\:\mathrm{the}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{curves} \\ $$$$\:\:\:\mathrm{x}=\mathrm{y}^{\mathrm{2}} −\mathrm{1}\:\mathrm{and}\:\mathrm{x}=\mid\mathrm{y}\mid\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\: \\ $$$$ \\ $$
Question Number 144634 Answers: 2 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that}\:\:\:\:\:\:\:\: \\ $$$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\frac{\mathrm{2}{b}\left({c}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{6} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{3}} +\mathrm{3}{b}^{\mathrm{3}} +{c}^{\mathrm{3}} +\frac{\mathrm{3}{b}\left({c}^{\mathrm{3}} +{a}^{\mathrm{3}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{8} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{4}} +\mathrm{4}{b}^{\mathrm{4}} +{c}^{\mathrm{4}} +\frac{\mathrm{4}{b}\left({c}^{\mathrm{4}} +{a}^{\mathrm{4}} \right)}{{c}+{a}}\:\geqslant\:\mathrm{10} \\ $$
Question Number 144629 Answers: 1 Comments: 0
$${if}\:\:{f}^{\mathrm{2}} \left(\mathrm{2}{x}-\mathrm{1}\right)-\mathrm{10}{f}\left(\mathrm{3}{x}-\mathrm{2}\right)+\mathrm{25}=\mathrm{0} \\ $$$${find}\:\:{f}\:^{'} \left(\mathrm{1}\right)+{f}\left(\mathrm{1}\right)=? \\ $$
Question Number 144622 Answers: 2 Comments: 0
Question Number 144619 Answers: 0 Comments: 0
Question Number 144618 Answers: 0 Comments: 1
Question Number 144614 Answers: 2 Comments: 0
$$\overset{} {\:}\mathrm{Given}\:\mathrm{that}\:{x}\:=\:\mathrm{tan}\:\mathrm{23}°,\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\:\mathrm{cos}\:\mathrm{16}°\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:{x}\underset{} {.} \\ $$
Question Number 144609 Answers: 1 Comments: 0
$${How}\:{many}\:{digits}\:{doest}\:{the}\:{number} \\ $$$$\mathrm{2021}^{\mathrm{2022}} \:\:{have}.? \\ $$
Question Number 144608 Answers: 1 Comments: 0
$${find}\:{all}\:{aplication}\:{f}\:{in}\:\mathbb{R}\rightarrow\mathbb{R}\:\:{f}\in{C}^{\mathrm{2}} \\ $$$$\forall{x}\in\mathbb{R}.\:\:{f}''\left({x}\right)+{f}\left(−{x}\right)={x} \\ $$
Question Number 144607 Answers: 1 Comments: 0
Question Number 144603 Answers: 1 Comments: 0
$$\mathrm{Let}\:{a},{b},{c}\:>\:\mathrm{0}\:\mathrm{and}\:\left({a}+{b}\right)\left({b}+{c}\right)\:=\:\mathrm{4}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}{a}+{b}\right)\left({a}+{b}\right)+\left({b}+\mathrm{2}{c}\right)\left({b}+{c}\right)\:\geqslant\:\mathrm{8}+\frac{\mathrm{1}}{\mathrm{2}}\left({a}+\mathrm{2}{b}+{c}\right)\left({c}+{a}\right)\:\:\:\:\:\:\: \\ $$$$\mathrm{Determine}\:\mathrm{when}\:\mathrm{equality}\:\mathrm{holds}.\:\:\: \\ $$
Question Number 144602 Answers: 1 Comments: 0
Question Number 144600 Answers: 1 Comments: 0
$${if}\:{x},{y},{z}>\mathrm{0}\:;\:{xy}+{yz}+{zx}=\mathrm{1}\:{prove}\:{that}: \\ $$$${xyz}\:+\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+{x}^{\mathrm{3}} \right)\left(\mathrm{1}+{y}^{\mathrm{3}} \right)\left(\mathrm{1}+{z}^{\mathrm{3}} \right)}\:\geqslant\:\mathrm{1} \\ $$
Pg 645 Pg 646 Pg 647 Pg 648 Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654
Terms of Service
Privacy Policy
Contact: info@tinkutara.com