Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 650
Question Number 154192 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}.{sin}\left({ln}\left({x}\right)\right)}{\mathrm{1}−{x}}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:{method}\:\mathrm{1} \\ $$$$\:\:\:\:\:\Omega=\:\mathrm{I}{m}\left[\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{x}^{\:{i}+\mathrm{1}} }{\mathrm{1}−{x}}\:{dx}=\Phi\right] \\ $$$$\:\:\:\:\:\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}^{\:{i}+\mathrm{1}} +{x}^{\:{i}+\mathrm{2}} }{\mathrm{1}−{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{{x}^{\:\mathrm{2}} ={t}} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{t}^{\:\frac{{i}}{\mathrm{2}}} −{t}^{\frac{{i}+\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}−{t}}{dt} \\ $$$$\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\:\psi\:\left(\mathrm{1}\:+\frac{{i}+\mathrm{1}}{\mathrm{2}}\right)−\psi\:\left(\mathrm{1}+\frac{{i}}{\mathrm{2}}\right)\right\} \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\:\:\frac{\mathrm{2}}{\mathrm{1}+{i}}\:+\:\psi\:\left(\:\frac{\mathrm{1}+{i}}{\mathrm{2}}\:\right)−\frac{\mathrm{2}}{{i}}−\psi\:\left(\frac{{i}}{\mathrm{2}}\right)\right\} \\ $$$$\:\:\:\:\:=\:\frac{−{i}}{−\mathrm{1}+{i}}\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\psi\:\left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)−\psi\left(\frac{{i}}{\mathrm{2}}\:\right)\right\} \\ $$$$\:\:\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}}{\mathrm{2}\:}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\psi\left(\frac{\mathrm{1}+{i}}{\mathrm{2}}\right)−\psi\left(\frac{{i}}{\mathrm{2}}\right)\right\} \\ $$$$\:\:\:\:\Omega\:=\:\mathrm{I}{m}\:\left(\Phi\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{I}{m}\left(\psi\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}}{\mathrm{2}}\right)\right)−\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{I}{m}\left(\frac{{i}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}\:}\:\left\{\:\mathrm{1}\:+\frac{\pi}{\mathrm{2}}\:{tanh}\left(\frac{\pi}{\mathrm{2}}\right)\:−\mathrm{1}−\frac{\pi}{\mathrm{2}}\:{coth}\left(\frac{\pi}{\mathrm{2}}\right)\right\} \\ $$$$\:\:\:\:\:\:=\frac{\pi}{\mathrm{4}}\:\:\left\{\frac{−\mathrm{1}}{{sinh}\left(\frac{\pi}{\mathrm{2}}\right).{cosh}\left(\frac{\pi}{\mathrm{2}}\right)}\right\}=\frac{−\pi}{\mathrm{2}\:{sinh}\:\left(\pi\:\right)}\:\checkmark \\ $$$$ \\ $$
Question Number 154186 Answers: 1 Comments: 0
Question Number 154177 Answers: 1 Comments: 2
Question Number 154175 Answers: 2 Comments: 1
Question Number 154172 Answers: 0 Comments: 1
Question Number 154148 Answers: 1 Comments: 0
$$\boldsymbol{{z}}^{\mathrm{4}} \:-\:\frac{\mathrm{50}}{\mathrm{2}\boldsymbol{{z}}^{\mathrm{4}} \:-\:\mathrm{7}}\:=\:\mathrm{14}\:\:\:\Rightarrow\:\:\:\boldsymbol{{z}}\:=\:? \\ $$
Question Number 154143 Answers: 2 Comments: 0
Question Number 154142 Answers: 2 Comments: 0
Question Number 154138 Answers: 1 Comments: 0
Question Number 154133 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{x}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{Find}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right)=? \\ $$
Question Number 154131 Answers: 0 Comments: 1
$$ \\ $$A long distance runner runs 14km 30°north of east, 7km 60° north of west, 6km 30° south of west, and finally 4km south. Find his final distance and direction relative to the starting point?
Question Number 154200 Answers: 1 Comments: 0
$${g}\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)=\frac{\mathrm{7}{x}+\mathrm{3}}{{x}+\mathrm{1}}\:\:{and}\:\:{f}\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{3}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{7} \\ $$$${find}\:\:\left({f}+{g}\right)\left({x}\right)=?\:\:\: \\ $$
Question Number 154116 Answers: 0 Comments: 0
Question Number 154104 Answers: 3 Comments: 0
$$\:\:\int\:{e}^{\sqrt{{x}}} \:{dx}\:=? \\ $$
Question Number 154103 Answers: 2 Comments: 2
$${si}\:{w}\:{est}\:{une}\:{racine}\:{cubique}\:{de}\:\mathrm{1}\:{different}\:{de}\:\mathrm{1},{alors}: \\ $$$$\left(\mathrm{1}+{w}−{w}^{\mathrm{2}} \right)^{\mathrm{7}} =? \\ $$
Question Number 154102 Answers: 0 Comments: 0
Question Number 154100 Answers: 1 Comments: 0
Question Number 154099 Answers: 1 Comments: 0
$$\:\begin{cases}{{x}^{\mathrm{2}} +{y}\sqrt{{xy}}\:=\:\mathrm{72}}\\{{y}^{\mathrm{2}} +{x}\sqrt{{xy}}\:=\:\mathrm{36}}\end{cases} \\ $$
Question Number 154088 Answers: 1 Comments: 1
Question Number 154087 Answers: 0 Comments: 0
Question Number 154085 Answers: 1 Comments: 1
Question Number 154081 Answers: 1 Comments: 0
$$\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\mathrm{5}}]{\mathrm{32}{x}^{\mathrm{5}} −\mathrm{14}{x}^{\mathrm{4}} +\mathrm{3}}−\sqrt[{\mathrm{7}}]{\mathrm{128}{x}^{\mathrm{7}} +\mathrm{6}{x}^{\mathrm{6}} −\mathrm{1}}\:=? \\ $$
Question Number 154080 Answers: 1 Comments: 0
$$\:\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{ln}\:^{\mathrm{2}} \left(\frac{\mathrm{1}+\mathrm{sin}\:{t}}{\mathrm{1}−\mathrm{sin}\:{t}}\right){dt} \\ $$
Question Number 154078 Answers: 0 Comments: 1
Question Number 154068 Answers: 3 Comments: 3
Question Number 154065 Answers: 1 Comments: 0
Pg 645 Pg 646 Pg 647 Pg 648 Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654
Terms of Service
Privacy Policy
Contact: info@tinkutara.com