Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 650
Question Number 153973 Answers: 2 Comments: 0
Question Number 153972 Answers: 2 Comments: 0
$${soit}:{f}\rightarrow{x}^{\mathrm{3}} +\mathrm{3}{x}+\mathrm{1} \\ $$$${alors}:\left({f}^{\_\mathrm{1}} \right)^{''} \left(\mathrm{5}\right)=? \\ $$
Question Number 153965 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{xy}+{y}^{\mathrm{2}} =\mathrm{1},\:\mathrm{prove}\:\mathrm{that}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{2}}{\left({x}−{y}\right)^{\mathrm{3}} } \\ $$
Question Number 153963 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{that}\:{f}\:\mathrm{and}\:{g}\:\mathrm{are}\:\mathrm{differentiable} \\ $$$$\mathrm{functions}\:\mathrm{such}\:\mathrm{that}\:{f}\:'\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left({f}\left({x}\right)\right)^{\mathrm{2}} }\:}, \\ $$$$\mathrm{and}\:{g}={f}^{\:−\mathrm{1}} \:,\:\mathrm{find}\:{g}'\left({x}\right). \\ $$
Question Number 153958 Answers: 4 Comments: 0
Question Number 153959 Answers: 1 Comments: 0
Question Number 153956 Answers: 2 Comments: 0
$$\:{Max}\:\&\:{min}\:{value}\:{of}\:{function} \\ $$$$\:{f}\left({x}\right)=\sqrt{\mathrm{6}−{x}}\:+\sqrt{\mathrm{12}+{x}}\:. \\ $$
Question Number 153950 Answers: 1 Comments: 0
Question Number 153949 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right){dx} \\ $$$$\: \\ $$
Question Number 154089 Answers: 2 Comments: 0
Question Number 154090 Answers: 0 Comments: 0
$$ \\ $$
Question Number 153946 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\mathrm{show}\:\mathrm{whether} \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left(\sqrt{{x}}\right){dx} \\ $$$$\:\:\mathrm{is}\:\mathrm{solvable} \\ $$$$\: \\ $$
Question Number 153934 Answers: 0 Comments: 0
Question Number 153977 Answers: 1 Comments: 0
Question Number 153924 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{sin}\:{x}\left(\mathrm{1}+\mathrm{cos}\:{x}\right)}\:{dx}\:=? \\ $$
Question Number 153920 Answers: 0 Comments: 0
Question Number 153918 Answers: 1 Comments: 0
$$\mathrm{the}\:\mathrm{base}\:\mathrm{of}\:\mathrm{an}\:\mathrm{object}\:\mathrm{is}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with} \\ $$$$\mathrm{radius}\:\mathrm{1}.\:\mathrm{suppose}\:\mathrm{that}\:\mathrm{all}\:\mathrm{section}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}\:\mathrm{are} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{a}\:\mathrm{diameter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}.\:\mathrm{determine} \\ $$$$\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{object}? \\ $$
Question Number 153916 Answers: 0 Comments: 0
$${The}\:{value}\:{of}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!}\:\beta\left(\mathrm{2},{n}+\mathrm{1}\right)\:{is} \\ $$$${a}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{2}_{{n}} \right)\frac{{x}^{{n}} }{{n}!} \\ $$$${b}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right)\left(\mathrm{2}_{{n}} \right)}{\left(\mathrm{1}_{{n}} \right)}\:\frac{{x}^{{n}} }{{n}!} \\ $$$${c}.\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{2}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$$${d}.\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{3}_{{n}} \right){x}^{{n}} }{\left(\mathrm{1}_{{n}} \right){n}!} \\ $$
Question Number 153915 Answers: 1 Comments: 0
Question Number 153912 Answers: 2 Comments: 0
Question Number 153905 Answers: 2 Comments: 1
Question Number 153903 Answers: 0 Comments: 0
Question Number 153901 Answers: 2 Comments: 1
Question Number 153899 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{there}\:\mathrm{exists}\:\:\mathrm{2016} \\ $$$$\mathrm{distinct}\:\mathrm{prime}\:\mathrm{numbers}\:\:\mathrm{p}_{\mathrm{1}} ,\mathrm{p}_{\mathrm{2}} ,...,\mathrm{p}_{\mathrm{2016}} \\ $$$$\mathrm{and}\:\mathrm{positive}\:\mathrm{integer}\:\:\boldsymbol{\mathrm{n}}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\mathrm{2016}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{p}_{\boldsymbol{\mathrm{i}}} ^{\mathrm{2}} \:+\:\mathrm{1}}\:=\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} } \\ $$
Question Number 153898 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{all}\:\mathrm{functions}\:\:\mathrm{f}:\mathrm{Q}\rightarrow\mathrm{Q}\:\:\mathrm{satisfying} \\ $$$$\mathrm{these}\:\mathrm{followong}\:\mathrm{conditions}\:\mathrm{for}\:\mathrm{all}\:\boldsymbol{\mathrm{x}}\in\mathrm{Q} \\ $$$$\mathrm{1}.\:\mathrm{f}\left(\mathrm{x}\:+\:\mathrm{1}\right)\:=\:\mathrm{f}\left(\mathrm{x}\right)\:+\:\mathrm{1} \\ $$$$\mathrm{2}.\:\mathrm{f}\left(\mathrm{x}^{\mathrm{3}} \right)\:=\:\mathrm{f}^{\:\mathrm{3}} \left(\mathrm{x}\right) \\ $$
Question Number 153896 Answers: 1 Comments: 0
Pg 645 Pg 646 Pg 647 Pg 648 Pg 649 Pg 650 Pg 651 Pg 652 Pg 653 Pg 654
Terms of Service
Privacy Policy
Contact: info@tinkutara.com