is this right?
i had let θ= { ((tan^(−1) ((d/c))),((c>0,d>0))),((π−tan^(−1) ((d/c))),((c<0,d>0))),((−π+tan^(−1) ((d/c))),((c<0,d<0))),((−tan^(−1) ((d/c))),((c>0,d<0))) :} before i calculated below
(a+bi)^(c+di) =∣a+di∣^(c+di) e^(i(c+di)θ)
=∣a+bi∣^c ∣a+bi∣^di e^(icθ) e^(−dθ)
=((√(a^2 +b^2 )))^c ((√(a^2 +b^2 )))^di e^(icθ) e^(−dθ)
=((√(a^2 +b^2 )))^c e^((1/2)idln(a^2 +b^2 )) e^(icθ) e^(−dθ)
=((√(a^2 +b^2 )))^c e^(−dθ) e^(i(dln(a^2 +b^2 )+cθ))
=((√(a^2 +b^2 )))^c e^(−dθ) (cos(dln(a^2 +b^2 )+cθ)+isin(dln(a^2 +b^2 )+cθ))
|