Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 65
Question Number 219077 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{+\infty} \left(\frac{{sin}\left({n}\right)}{{n}}\right)^{{m}} {dn}=\pi\centerdot\frac{{m}}{\mathrm{2}^{{m}} }\centerdot\underset{\phi=\mathrm{0}} {\overset{{m}/\mathrm{2}} {\sum}}\left(−\mathrm{1}\right)^{\emptyset} \centerdot\frac{\left({n}−\mathrm{2}\phi\right)^{{m}−\mathrm{1}} }{\left({m}−\phi\right)!\centerdot\phi!}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Proof}\:{this}\:{formula} \\ $$
Question Number 219076 Answers: 0 Comments: 0
Question Number 219071 Answers: 3 Comments: 0
Question Number 219070 Answers: 0 Comments: 0
Question Number 219069 Answers: 0 Comments: 0
Question Number 219068 Answers: 2 Comments: 0
Question Number 219067 Answers: 2 Comments: 1
Question Number 219066 Answers: 4 Comments: 0
Question Number 219065 Answers: 3 Comments: 0
Question Number 219060 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{{m}} }{{x}^{{n}} }{dx},{n}\in\mathbb{N},{m}\in\mathbb{N},{n}\leqslant{m} \\ $$
Question Number 219135 Answers: 1 Comments: 0
Question Number 219025 Answers: 3 Comments: 0
Question Number 219004 Answers: 0 Comments: 0
Question Number 219003 Answers: 1 Comments: 0
Question Number 222659 Answers: 1 Comments: 0
Question Number 218970 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},..... \\ $$$$ \\ $$
Question Number 218957 Answers: 4 Comments: 0
Question Number 218956 Answers: 2 Comments: 0
Question Number 218955 Answers: 4 Comments: 0
Question Number 218954 Answers: 2 Comments: 1
Question Number 218953 Answers: 4 Comments: 0
Question Number 218952 Answers: 4 Comments: 7
Question Number 218951 Answers: 2 Comments: 1
Question Number 218950 Answers: 7 Comments: 1
Question Number 218949 Answers: 0 Comments: 1
Question Number 218896 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{prove}}; \\ $$$$\:\mid\int\int\int_{\left[\mathrm{0},\infty\right]^{\mathrm{3}} } \boldsymbol{{f}}\frac{\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{x}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{y}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{z}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} }\mid\leqslant\boldsymbol{{C}}\left(\int\int\int_{\mathbb{R}_{+} ^{\mathrm{3}} } \mid\boldsymbol{{f}}\mid\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\:\:\: \\ $$$$ \\ $$
Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69
Terms of Service
Privacy Policy
Contact: info@tinkutara.com