Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 645

Question Number 147624    Answers: 0   Comments: 0

The current in the windings on a toroid is 2.0A.There are 400 turns and the mean circumferential length is 40cm.With the aid of a search coil and charge measuring instrument the magnetic field is found to be 1.0T.calculate: i)magnetic density ii)magnetization iii) magnetic susceptibility

$$\mathrm{The}\:\mathrm{current}\:\mathrm{in}\:\mathrm{the}\:\mathrm{windings}\:\mathrm{on}\:\mathrm{a}\: \\ $$$$\mathrm{toroid}\:\mathrm{is}\:\mathrm{2}.\mathrm{0A}.\mathrm{There}\:\mathrm{are}\:\mathrm{400}\:\mathrm{turns} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{mean}\:\mathrm{circumferential}\:\mathrm{length} \\ $$$$\mathrm{is}\:\mathrm{40cm}.\mathrm{With}\:\mathrm{the}\:\mathrm{aid}\:\mathrm{of}\:\mathrm{a}\:\mathrm{search} \\ $$$$\:\mathrm{coil}\:\mathrm{and}\:\mathrm{charge}\:\mathrm{measuring}\:\mathrm{instrument} \\ $$$$\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{is}\:\mathrm{found}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{1}.\mathrm{0T}.\mathrm{calculate}: \\ $$$$\left.\mathrm{i}\left.\right)\mathrm{magnetic}\:\mathrm{density}\:\mathrm{ii}\right)\mathrm{magnetization} \\ $$$$\left.\mathrm{iii}\right)\:\mathrm{magnetic}\:\mathrm{susceptibility} \\ $$

Question Number 147623    Answers: 0   Comments: 1

Question Number 147622    Answers: 0   Comments: 1

Question Number 147621    Answers: 1   Comments: 0

Find the general solution for: (dy/dx) = (3x + 2y + 1)^2

$${Find}\:{the}\:{general}\:{solution}\:{for}: \\ $$$$\frac{{dy}}{{dx}}\:=\:\left(\mathrm{3}{x}\:+\:\mathrm{2}{y}\:+\:\mathrm{1}\right)^{\mathrm{2}} \\ $$

Question Number 147612    Answers: 2   Comments: 0

Given that f(x)=(((x^3 +1)^2 (√(1+x^2 )))/(1+(√x))). By using logarithmatic differentiation, find the value of f ′(1).

$$\mathrm{Given}\:\mathrm{that}\:{f}\left({x}\right)=\frac{\left({x}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{{x}}}. \\ $$$$\mathrm{By}\:\mathrm{using}\:\mathrm{logarithmatic}\:\mathrm{differentiation}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{f}\:'\left(\mathrm{1}\right). \\ $$

Question Number 147611    Answers: 3   Comments: 0

(111)_(10) = (x)_5 ⇒ x = ?

$$\left(\mathrm{111}\right)_{\mathrm{10}} \:=\:\left({x}\right)_{\mathrm{5}} \\ $$$$\Rightarrow\:{x}\:=\:? \\ $$

Question Number 147609    Answers: 0   Comments: 0

Question Number 147606    Answers: 0   Comments: 0

(R/r)=(5/2) ⇒ a:b:c=3:4:5 prove R,r− radius h_a :h_b :h_c =(1/a):(1/b):(1/c)=bc:ac:ab prove

$$\frac{\boldsymbol{\mathrm{R}}}{\boldsymbol{{r}}}=\frac{\mathrm{5}}{\mathrm{2}}\:\:\Rightarrow\:\boldsymbol{{a}}:\boldsymbol{{b}}:\boldsymbol{{c}}=\mathrm{3}:\mathrm{4}:\mathrm{5} \\ $$$$\boldsymbol{\mathrm{prove}}\:\: \\ $$$$\boldsymbol{\mathrm{R}},\boldsymbol{{r}}−\:\boldsymbol{\mathrm{radius}} \\ $$$$\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{a}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{b}}} :\boldsymbol{\mathrm{h}}_{\boldsymbol{\mathrm{c}}} =\frac{\mathrm{1}}{\boldsymbol{{a}}}:\frac{\mathrm{1}}{\boldsymbol{{b}}}:\frac{\mathrm{1}}{\boldsymbol{{c}}}=\boldsymbol{{bc}}:\boldsymbol{{ac}}:\boldsymbol{{ab}} \\ $$$$\boldsymbol{{prove}} \\ $$

Question Number 147603    Answers: 1   Comments: 0

Question Number 147602    Answers: 1   Comments: 0

Question Number 147593    Answers: 2   Comments: 0

Question Number 147587    Answers: 1   Comments: 1

Question Number 147585    Answers: 1   Comments: 0

Question Number 147582    Answers: 1   Comments: 0

if x;y;z>0 prove that ((x^3 +y^3 +z^3 )/(xyz)) ≥ 2((x/(y+z)) + (y/(z+x)) + (z/(x+y)))

$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that} \\ $$$$\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} }{{xyz}}\:\geqslant\:\mathrm{2}\left(\frac{{x}}{{y}+{z}}\:+\:\frac{{y}}{{z}+{x}}\:+\:\frac{{z}}{{x}+{y}}\right) \\ $$

Question Number 147581    Answers: 1   Comments: 0

2sin 2x −4sin^2 x = 7cos 2x (π/2)<x<π ⇒ sin 2x =?

$$\:\:\mathrm{2sin}\:\mathrm{2x}\:−\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}\:=\:\mathrm{7cos}\:\mathrm{2x}\: \\ $$$$\:\frac{\pi}{\mathrm{2}}<\mathrm{x}<\pi\:\Rightarrow\:\mathrm{sin}\:\mathrm{2x}\:=? \\ $$

Question Number 147576    Answers: 1   Comments: 0

(1):: Σ_(i=1) ^n Σ_(j=1) ^n ∣i−j∣=? (2):: Σ_(i=1) ^n Σ_(j=i) ^n (1/j)=? (3):: Σ_(i=1) ^n^2 [(√i)]=?

$$\left(\mathrm{1}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{i}−\mathrm{j}\mid=? \\ $$$$\left(\mathrm{2}\right)::\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\underset{\mathrm{j}=\mathrm{i}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\mathrm{j}}=? \\ $$$$\left(\mathrm{3}\right)::\:\:\:\:\:\:\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}^{\mathrm{2}} } {\sum}}\left[\sqrt{\mathrm{i}}\right]=? \\ $$

Question Number 147573    Answers: 0   Comments: 1

Question Number 147572    Answers: 2   Comments: 0

Σ_(n≥1) ((4n−3)/((n^2 +2n)(n+3))) =?

$$\:\:\:\underset{{n}\geqslant\mathrm{1}} {\sum}\:\frac{\mathrm{4}{n}−\mathrm{3}}{\left({n}^{\mathrm{2}} +\mathrm{2}{n}\right)\left({n}+\mathrm{3}\right)}\:=? \\ $$

Question Number 147569    Answers: 1   Comments: 0

find the taylor series of f(z)=sinz ,z=(π/4) in complex number

$${find}\:{the}\:{taylor}\:{series}\:{of}\:{f}\left({z}\right)={sinz}\:,{z}=\frac{\pi}{\mathrm{4}}\:{in}\:{complex}\:{number} \\ $$

Question Number 147566    Answers: 1   Comments: 0

x^3 + 3367 = 2^n ⇒ x ; n = ?

$${x}^{\mathrm{3}} \:+\:\mathrm{3367}\:=\:\mathrm{2}^{\boldsymbol{{n}}} \:\:\Rightarrow\:{x}\:;\:{n}\:=\:? \\ $$

Question Number 147561    Answers: 1   Comments: 1

Question Number 147557    Answers: 2   Comments: 0

Simlify (((1+(√x))/( (√(1+x)))) − ((√(1+x))/(1+(√x))))^2 - (((1−(√x))/( (√(1+x)))) − ((√(1+x))/(1−(√x))))^2

$${Simlify} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}+\sqrt{{x}}}\right)^{\mathrm{2}} -\:\left(\frac{\mathrm{1}−\sqrt{{x}}}{\:\sqrt{\mathrm{1}+{x}}}\:−\:\frac{\sqrt{\mathrm{1}+{x}}}{\mathrm{1}−\sqrt{{x}}}\right)^{\mathrm{2}} \\ $$

Question Number 147554    Answers: 1   Comments: 0

A toroid core has N=1200 turns, length L=80cm,cross-section area A=60cm^2 ,current I=1.5A. Compute B and H.Assume an empty core

$$\mathrm{A}\:\mathrm{toroid}\:\mathrm{core}\:\mathrm{has}\:\mathrm{N}=\mathrm{1200}\:\mathrm{turns}, \\ $$$$\mathrm{length}\:\mathrm{L}=\mathrm{80cm},\mathrm{cross}-\mathrm{section}\:\mathrm{area} \\ $$$$\mathrm{A}=\mathrm{60cm}^{\mathrm{2}} ,\mathrm{current}\:\mathrm{I}=\mathrm{1}.\mathrm{5A}. \\ $$$$\:\:\mathrm{Compute}\:\mathrm{B}\:\mathrm{and}\:\mathrm{H}.\mathrm{Assume}\:\mathrm{an} \\ $$$$\:\mathrm{empty}\:\mathrm{core} \\ $$

Question Number 147553    Answers: 1   Comments: 0

Question Number 147543    Answers: 2   Comments: 0

Π_(m=1) ^n ((1/2))^m

$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{m}} \\ $$

Question Number 147539    Answers: 2   Comments: 0

show that (1/2)∫_1 ^( 2) (1/x^5 )dx ≤ ∫_1 ^( 2) (1/(x^4 +1))dx ≤∫_1 ^( 2) (1/x^4 )

$${show}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{5}} }{dx}\:\leqslant\:\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx}\:\leqslant\int_{\mathrm{1}} ^{\:\mathrm{2}} \frac{\mathrm{1}}{{x}^{\mathrm{4}} } \\ $$

  Pg 640      Pg 641      Pg 642      Pg 643      Pg 644      Pg 645      Pg 646      Pg 647      Pg 648      Pg 649   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com