Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 642
Question Number 152201 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:...\mathrm{Integral}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\pi} {ln}\:\left({sin}\left({x}\right)\:\right).{tan}^{\:−\mathrm{1}} \left({cot}\left({x}\right)\right){dx}\overset{?} {=}\:\mathrm{0} \\ $$$$\:\:\:\:\:{proof}\:::\:.... \\ $$$$\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\pi} {ln}\:\left({sin}\left({x}\right)\:\right).\:{tan}^{\:−\mathrm{1}} \left(\:{tan}\left(\frac{\pi}{\mathrm{2}}\:−{x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\::=\:\int_{\mathrm{0}} ^{\:\pi} \left(\frac{\pi}{\mathrm{2}}\:−{x}\:\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\pi} {ln}\left({sin}\left({x}\right)\right){dx}−\int_{\mathrm{0}} ^{\:\pi} {xln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{2}}\:\left(−\pi\:{ln}\:\left(\mathrm{2}\:\right)\right)\:−\mathrm{J}\:\:\:......\left(\:\mathrm{1}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\mathrm{J}\::\:=\:\int_{\mathrm{0}} ^{\:\pi} \left(\pi\:−\:{x}\right)\:{ln}\:\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\pi\:\left(−\pi\:{ln}\left(\mathrm{2}\right)\right)−\mathrm{J} \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\mathrm{J}\::=\frac{−\pi^{\:\mathrm{2}} }{\mathrm{2}}\:{ln}\left(\:\mathrm{2}\:\right)\:.......\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\left(\mathrm{2}\right)\:\Rrightarrow\:\left(\mathrm{1}\:\right)\::\:\:\:\:\:\mathrm{I}\:=\:\mathrm{0}\:.........\blacksquare \\ $$$$ \\ $$
Question Number 152178 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\mathrm{y}\sqrt{\mathrm{x}}\:+\:\mathrm{x}\sqrt{\mathrm{y}}\:=\:\mathrm{x}\:+\:\mathrm{y}}\\{\sqrt{\mathrm{x}}\:+\:\sqrt{\mathrm{y}}\:=\:\mathrm{xy}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{other}\:\mathrm{than} \\ $$$$\mathrm{x}\:=\:\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\mathrm{0} \\ $$
Question Number 152175 Answers: 1 Comments: 6
$$\mathrm{what}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{if}\:\mathrm{given} \\ $$$$\:\mathrm{cos}\:\mathrm{3x}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}} \\ $$
Question Number 152187 Answers: 1 Comments: 1
$$\mathrm{Please}\:\mathrm{formular}\:\mathrm{for}\:\:\:\:\:\Gamma\left(\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$
Question Number 152165 Answers: 2 Comments: 0
$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{3x}}\mathrm{dx} \\ $$
Question Number 152164 Answers: 1 Comments: 2
$$\int\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{4}−\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 152163 Answers: 1 Comments: 0
$$\int\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{3}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{2}}\right)\mathrm{dx} \\ $$
Question Number 152161 Answers: 4 Comments: 0
$$\int\mathrm{cos}\:\left(\mathrm{log}\:\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 152160 Answers: 1 Comments: 0
$$\int\left[\frac{\mathrm{1}}{\mathrm{log}\:\mathrm{x}}−\frac{\mathrm{1}}{\left(\mathrm{log}\:\mathrm{x}\right)^{\mathrm{2}} }\right]\mathrm{dx} \\ $$
Question Number 152197 Answers: 0 Comments: 0
Question Number 152151 Answers: 3 Comments: 0
Question Number 152150 Answers: 1 Comments: 0
Question Number 152147 Answers: 1 Comments: 0
Question Number 152142 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right){dx}=−\frac{\gamma}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\frac{\mathrm{6}\sqrt{\mathrm{3}}}{\pi}+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{27}}\left(\mathrm{5ln2}\pi−\mathrm{6ln}\Gamma\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\right) \\ $$
Question Number 152141 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{+\infty} \frac{\left(\mathrm{sin}{x}\right)^{\mathrm{2}{n}+\mathrm{1}} }{{x}}{dx}=\frac{\pi}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix} \\ $$
Question Number 152140 Answers: 0 Comments: 0
$${I}=\int_{\mathrm{0}} ^{\mathrm{2n}\pi} \mathrm{max}\left(\mathrm{sin}{x},\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}{x}\right)\right){dx} \\ $$
Question Number 152139 Answers: 1 Comments: 1
$$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers}\:{x}\:\mathrm{are}\:\mathrm{found}\:\mathrm{between}\:\mathrm{9000}\:\mathrm{and}\:\mathrm{11000} \\ $$$$\mathrm{and}\:\mathrm{verify}\:{x}=\mathrm{12}\left[\mathrm{19}\right],\:{x}=\mathrm{5}\left[\mathrm{13}\right],\:{x}=\mathrm{9}\left[\mathrm{11}\right]\:? \\ $$
Question Number 152122 Answers: 1 Comments: 0
$$\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+...+\sqrt{\mathrm{96}+\sqrt{\mathrm{99}}}}}}\:=\:? \\ $$$$ \\ $$
Question Number 152115 Answers: 1 Comments: 0
$$\int\frac{\mathrm{dx}}{\mathrm{asin}\:\mathrm{x}+\mathrm{bcos}\:\mathrm{x}} \\ $$
Question Number 152116 Answers: 3 Comments: 2
$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}\mathrm{dx} \\ $$
Question Number 152112 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{I}_{\mathrm{n}} =\int\frac{\mathrm{cos}\:\mathrm{nx}}{\mathrm{cos}\:\mathrm{x}}\mathrm{dx}\:\:\:\mathrm{then}\:\mathrm{1}_{\mathrm{n}} =? \\ $$
Question Number 152111 Answers: 3 Comments: 0
$$\int\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$
Question Number 152110 Answers: 3 Comments: 0
$$\int\mathrm{a}^{\mathrm{mx}} \mathrm{b}^{\mathrm{nx}} \mathrm{dx} \\ $$
Question Number 152106 Answers: 0 Comments: 0
$$\int\:\mathrm{x}^{\mathrm{n}} \:\mathrm{cos}\left(\mathrm{nx}\right)\:\mathrm{dx} \\ $$
Question Number 152094 Answers: 1 Comments: 0
Question Number 152091 Answers: 1 Comments: 0
$${Given}\:{tbat}\:{Arg}\left({z}+\mathrm{1}\right)=\frac{\Pi}{\mathrm{6}}\:{and}\: \\ $$$${Arg}\left({z}−\mathrm{1}\right)=\frac{\mathrm{2}\Pi}{\mathrm{3}}.{Find}\:{z}. \\ $$$${please}\:{help}\:{me} \\ $$
Pg 637 Pg 638 Pg 639 Pg 640 Pg 641 Pg 642 Pg 643 Pg 644 Pg 645 Pg 646
Terms of Service
Privacy Policy
Contact: info@tinkutara.com