Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 642

Question Number 152201    Answers: 0   Comments: 0

...Integral... I := ∫_0 ^( π) ln (sin(x) ).tan^( −1) (cot(x))dx=^? 0 proof :: .... I := ∫_0 ^( π) ln (sin(x) ). tan^( −1) ( tan((π/2) −x ))dx := ∫_0 ^( π) ((π/2) −x ).ln(sin(x))dx := (π/2) ∫_0 ^( π) ln(sin(x))dx−∫_0 ^( π) xln(sin(x))dx := (π/2) (−π ln (2 )) −J ......( 1 ) J : = ∫_0 ^( π) (π − x) ln (sin(x))dx := π (−π ln(2))−J ∴ J :=((−π^( 2) )/2) ln( 2 ) .......(2) (2) ⇛ (1 ) : I = 0 .........■

$$ \\ $$$$\:\:\:...\mathrm{Integral}... \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\pi} {ln}\:\left({sin}\left({x}\right)\:\right).{tan}^{\:−\mathrm{1}} \left({cot}\left({x}\right)\right){dx}\overset{?} {=}\:\mathrm{0} \\ $$$$\:\:\:\:\:{proof}\:::\:.... \\ $$$$\:\:\:\:\:\:\mathrm{I}\::=\:\int_{\mathrm{0}} ^{\:\pi} {ln}\:\left({sin}\left({x}\right)\:\right).\:{tan}^{\:−\mathrm{1}} \left(\:{tan}\left(\frac{\pi}{\mathrm{2}}\:−{x}\:\right)\right){dx} \\ $$$$\:\:\:\:\:\:\::=\:\int_{\mathrm{0}} ^{\:\pi} \left(\frac{\pi}{\mathrm{2}}\:−{x}\:\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{0}} ^{\:\pi} {ln}\left({sin}\left({x}\right)\right){dx}−\int_{\mathrm{0}} ^{\:\pi} {xln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\::=\:\frac{\pi}{\mathrm{2}}\:\left(−\pi\:{ln}\:\left(\mathrm{2}\:\right)\right)\:−\mathrm{J}\:\:\:......\left(\:\mathrm{1}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\mathrm{J}\::\:=\:\int_{\mathrm{0}} ^{\:\pi} \left(\pi\:−\:{x}\right)\:{ln}\:\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\::=\:\pi\:\left(−\pi\:{ln}\left(\mathrm{2}\right)\right)−\mathrm{J} \\ $$$$\:\:\:\:\:\:\:\:\therefore\:\:\:\:\:\mathrm{J}\::=\frac{−\pi^{\:\mathrm{2}} }{\mathrm{2}}\:{ln}\left(\:\mathrm{2}\:\right)\:.......\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\left(\mathrm{2}\right)\:\Rrightarrow\:\left(\mathrm{1}\:\right)\::\:\:\:\:\:\mathrm{I}\:=\:\mathrm{0}\:.........\blacksquare \\ $$$$ \\ $$

Question Number 152178    Answers: 2   Comments: 1

Solve the system { ((y(√x) + x(√y) = x + y)),(((√x) + (√y) = xy)) :} Find all the real solutions other than x = 0 and y = 0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system} \\ $$$$\begin{cases}{\mathrm{y}\sqrt{\mathrm{x}}\:+\:\mathrm{x}\sqrt{\mathrm{y}}\:=\:\mathrm{x}\:+\:\mathrm{y}}\\{\sqrt{\mathrm{x}}\:+\:\sqrt{\mathrm{y}}\:=\:\mathrm{xy}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{other}\:\mathrm{than} \\ $$$$\mathrm{x}\:=\:\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\mathrm{0} \\ $$

Question Number 152175    Answers: 1   Comments: 6

what exact value sin 2x if given cos 3x = (2/( (√5)))

$$\mathrm{what}\:\mathrm{exact}\:\mathrm{value}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{if}\:\mathrm{given} \\ $$$$\:\mathrm{cos}\:\mathrm{3x}\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}} \\ $$

Question Number 152187    Answers: 1   Comments: 1

Please formular for Γ((8/3))

$$\mathrm{Please}\:\mathrm{formular}\:\mathrm{for}\:\:\:\:\:\Gamma\left(\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$

Question Number 152165    Answers: 2   Comments: 0

∫((sin x)/(sin 3x))dx

$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{sin}\:\mathrm{3x}}\mathrm{dx} \\ $$

Question Number 152164    Answers: 1   Comments: 2

∫((2x+1)/(4−3x−x^2 ))dx

$$\int\frac{\mathrm{2x}+\mathrm{1}}{\mathrm{4}−\mathrm{3x}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 152163    Answers: 1   Comments: 0

∫(((x^2 +5x+3)/(x^2 +3x+2)))dx

$$\int\left(\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{5x}+\mathrm{3}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{2}}\right)\mathrm{dx} \\ $$

Question Number 152161    Answers: 4   Comments: 0

∫cos (log x)dx

$$\int\mathrm{cos}\:\left(\mathrm{log}\:\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 152160    Answers: 1   Comments: 0

∫[(1/(log x))−(1/((log x)^2 ))]dx

$$\int\left[\frac{\mathrm{1}}{\mathrm{log}\:\mathrm{x}}−\frac{\mathrm{1}}{\left(\mathrm{log}\:\mathrm{x}\right)^{\mathrm{2}} }\right]\mathrm{dx} \\ $$

Question Number 152197    Answers: 0   Comments: 0

Question Number 152151    Answers: 3   Comments: 0

Question Number 152150    Answers: 1   Comments: 0

Question Number 152147    Answers: 1   Comments: 0

Question Number 152142    Answers: 1   Comments: 0

∫_0 ^1 (x/((1−x+x^2 )^2 ))ln(ln(1/x))dx=−(γ/3)−(1/3)ln((6(√3))/π)+((π(√3))/(27))(5ln2π−6lnΓ((1/6)))

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{ln}\left(\mathrm{ln}\frac{\mathrm{1}}{{x}}\right){dx}=−\frac{\gamma}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ln}\frac{\mathrm{6}\sqrt{\mathrm{3}}}{\pi}+\frac{\pi\sqrt{\mathrm{3}}}{\mathrm{27}}\left(\mathrm{5ln2}\pi−\mathrm{6ln}\Gamma\left(\frac{\mathrm{1}}{\mathrm{6}}\right)\right) \\ $$

Question Number 152141    Answers: 2   Comments: 0

∫_0 ^(+∞) (((sinx)^(2n+1) )/x)dx=(π/2^(2n+1) ) (((2n)),(n) )

$$\int_{\mathrm{0}} ^{+\infty} \frac{\left(\mathrm{sin}{x}\right)^{\mathrm{2}{n}+\mathrm{1}} }{{x}}{dx}=\frac{\pi}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix} \\ $$

Question Number 152140    Answers: 0   Comments: 0

I=∫_0 ^(2nπ) max(sinx, sin^(−1) (sinx))dx

$${I}=\int_{\mathrm{0}} ^{\mathrm{2n}\pi} \mathrm{max}\left(\mathrm{sin}{x},\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}{x}\right)\right){dx} \\ $$

Question Number 152139    Answers: 1   Comments: 1

How many numbers x are found between 9000 and 11000 and verify x=12[19], x=5[13], x=9[11] ?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{numbers}\:{x}\:\mathrm{are}\:\mathrm{found}\:\mathrm{between}\:\mathrm{9000}\:\mathrm{and}\:\mathrm{11000} \\ $$$$\mathrm{and}\:\mathrm{verify}\:{x}=\mathrm{12}\left[\mathrm{19}\right],\:{x}=\mathrm{5}\left[\mathrm{13}\right],\:{x}=\mathrm{9}\left[\mathrm{11}\right]\:? \\ $$

Question Number 152122    Answers: 1   Comments: 0

(√(3+(√(6+(√(9+...+(√(96+(√(99)))))))))) = ?

$$\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+...+\sqrt{\mathrm{96}+\sqrt{\mathrm{99}}}}}}\:=\:? \\ $$$$ \\ $$

Question Number 152115    Answers: 1   Comments: 0

∫(dx/(asin x+bcos x))

$$\int\frac{\mathrm{dx}}{\mathrm{asin}\:\mathrm{x}+\mathrm{bcos}\:\mathrm{x}} \\ $$

Question Number 152116    Answers: 3   Comments: 2

∫((sin x)/( (√(1+sin x))))dx

$$\int\frac{\mathrm{sin}\:\mathrm{x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{x}}}\mathrm{dx} \\ $$

Question Number 152112    Answers: 1   Comments: 0

If I_n =∫((cos nx)/(cos x))dx then 1_n =?

$$\mathrm{If}\:\mathrm{I}_{\mathrm{n}} =\int\frac{\mathrm{cos}\:\mathrm{nx}}{\mathrm{cos}\:\mathrm{x}}\mathrm{dx}\:\:\:\mathrm{then}\:\mathrm{1}_{\mathrm{n}} =? \\ $$

Question Number 152111    Answers: 3   Comments: 0

∫tan^(−1) (sec x+tan x)dx

$$\int\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{sec}\:\mathrm{x}+\mathrm{tan}\:\mathrm{x}\right)\mathrm{dx} \\ $$

Question Number 152110    Answers: 3   Comments: 0

∫a^(mx) b^(nx) dx

$$\int\mathrm{a}^{\mathrm{mx}} \mathrm{b}^{\mathrm{nx}} \mathrm{dx} \\ $$

Question Number 152106    Answers: 0   Comments: 0

∫ x^n cos(nx) dx

$$\int\:\mathrm{x}^{\mathrm{n}} \:\mathrm{cos}\left(\mathrm{nx}\right)\:\mathrm{dx} \\ $$

Question Number 152094    Answers: 1   Comments: 0

Question Number 152091    Answers: 1   Comments: 0

Given tbat Arg(z+1)=(Π/6) and Arg(z−1)=((2Π)/3).Find z. please help me

$${Given}\:{tbat}\:{Arg}\left({z}+\mathrm{1}\right)=\frac{\Pi}{\mathrm{6}}\:{and}\: \\ $$$${Arg}\left({z}−\mathrm{1}\right)=\frac{\mathrm{2}\Pi}{\mathrm{3}}.{Find}\:{z}. \\ $$$${please}\:{help}\:{me} \\ $$

  Pg 637      Pg 638      Pg 639      Pg 640      Pg 641      Pg 642      Pg 643      Pg 644      Pg 645      Pg 646   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com