Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 637
Question Number 155069 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{3} \\ $$$$\mathrm{and}\:\:\mathrm{0}\leqslant\boldsymbol{\lambda}\leqslant\mathrm{1}\:\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}}{\mathrm{y}^{\mathrm{2}} +\lambda}\:+\:\frac{\mathrm{y}}{\mathrm{z}^{\mathrm{2}} +\lambda}\:+\:\frac{\mathrm{z}}{\mathrm{x}^{\mathrm{2}} +\lambda}\:\geqslant\:\frac{\mathrm{3}}{\lambda+\mathrm{1}} \\ $$
Question Number 155068 Answers: 0 Comments: 0
Question Number 155257 Answers: 1 Comments: 5
Question Number 155206 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d};\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{t}\:\:\mathrm{and}\:\:\mathrm{a}\neq\mathrm{b}\neq\mathrm{c}\neq\mathrm{d} \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{td}\:; \\ $$$$\mathrm{b}+\mathrm{c}+\mathrm{d}=\mathrm{xa}\:;\:\mathrm{c}+\mathrm{d}+\mathrm{a}=\mathrm{yb}\:;\:\mathrm{d}+\mathrm{a}+\mathrm{b}=\mathrm{zc} \\ $$
Question Number 155207 Answers: 1 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{e}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 155058 Answers: 0 Comments: 0
Question Number 155056 Answers: 1 Comments: 0
Question Number 155039 Answers: 2 Comments: 0
$$\frac{\mathrm{2}}{\mathrm{5}}\:+\:\frac{\mathrm{6}}{\mathrm{5}}\:=\:?\:\:{Hihi} \\ $$
Question Number 155036 Answers: 1 Comments: 0
$$\:\mathrm{If}\:\:\boldsymbol{\mathrm{a}}^{\boldsymbol{\mathrm{b}}} =\boldsymbol{\mathrm{b}}^{\boldsymbol{\mathrm{a}}} \:\mathrm{and}\:\boldsymbol{\mathrm{a}}=\mathrm{2}\boldsymbol{\mathrm{b}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\: \\ $$$$\:\:\mathrm{value}\:\mathrm{of}\:\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \:? \\ $$
Question Number 155035 Answers: 1 Comments: 0
Question Number 155034 Answers: 3 Comments: 4
Question Number 155033 Answers: 1 Comments: 0
Question Number 155032 Answers: 1 Comments: 0
Question Number 155023 Answers: 1 Comments: 2
Question Number 155016 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {tan}^{\mathrm{2}} {u}\left(\mathrm{1}−\frac{\mathrm{1}}{\left({u}+\mathrm{1}\right)^{\mathrm{2}} }\right){du} \\ $$
Question Number 155013 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{lnx}\right)\frac{{x}^{\mu−\mathrm{1}} }{\:\sqrt{−{ln}\left({x}\right)}}{dx}=? \\ $$
Question Number 155017 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx};\:{avec}\:{E}\left({x}\right)\:{la}\:{partie}\:{entiere} \\ $$
Question Number 154994 Answers: 1 Comments: 0
$$\mathrm{Find} \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}^{-\mathrm{1}} \left(\mathrm{2x}\right)\mathrm{ln}^{\mathrm{2}} \left(\mathrm{3x}\right)\mathrm{dx}=? \\ $$
Question Number 154993 Answers: 0 Comments: 0
Question Number 154992 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{cos}\:\mathrm{2}\theta\:+\mathrm{cos}\:\theta\:=\:\mathrm{sin}\:\theta \\ $$
Question Number 154989 Answers: 2 Comments: 0
$${x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} \:{is}\:{root}\:\mathrm{log}_{\mathrm{2}} {x}^{\left(\mathrm{1}+^{\mathrm{2}} \mathrm{log}\:{x}\right)} =\mathrm{2},\:{the}\:{value} \\ $$$${is}\:{x}_{\mathrm{1}} +{x}_{\mathrm{2}} =\:... \\ $$$${a}.\:\mathrm{2}\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${b}.\:\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${c}.\:\mathrm{4}\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${d}.\:\mathrm{4}\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${e}.\:\mathrm{6}\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 154987 Answers: 1 Comments: 1
$$\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}^{{c}} }{{c}^{{x}} }\:\:{dx} \\ $$
Question Number 154986 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{2x}\:=\:\frac{\mathrm{y}^{\mathrm{2}} \:-\:\mathrm{4y}\:+\:\mathrm{1}}{\mathrm{y}^{\mathrm{2}} \:-\:\mathrm{y}\:+\:\mathrm{1}} \\ $$$$\mathrm{y}\:=\:\frac{-\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{6x}\:-\:\mathrm{1}}{\mathrm{3x}^{\mathrm{2}} \:-\:\mathrm{2x}\:+\:\mathrm{3}} \\ $$
Question Number 154980 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\boldsymbol{\mathrm{a}}\:\:\mathrm{and}\:\:\boldsymbol{\mathrm{b}}\:\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{determine}\:\mathrm{a}\:\mathrm{necessary}\:\mathrm{and}\:\mathrm{sufficient} \\ $$$$\mathrm{condition}\:\mathrm{so}\:\mathrm{as}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\frac{\mathrm{a}\sqrt{\mathrm{b}}}{\mathrm{x}}\:=\:\mathrm{a}\:+\:\mathrm{b} \\ $$$$\mathrm{to}\:\mathrm{have}\:\mathrm{three}\:\mathrm{real}\:\mathrm{distinct}\:\mathrm{roots}. \\ $$
Question Number 154976 Answers: 0 Comments: 0
Question Number 154975 Answers: 0 Comments: 0
Pg 632 Pg 633 Pg 634 Pg 635 Pg 636 Pg 637 Pg 638 Pg 639 Pg 640 Pg 641
Terms of Service
Privacy Policy
Contact: info@tinkutara.com