Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 637
Question Number 154854 Answers: 1 Comments: 1
Question Number 154853 Answers: 1 Comments: 0
Question Number 154851 Answers: 0 Comments: 7
Question Number 154849 Answers: 1 Comments: 0
$${ax}\:+\:{y}\:+\:{z}\:=\:\mathrm{1} \\ $$$${x}\:+\:{ay}\:+\:{z}\:=\:{a} \\ $$$${x}\:+\:{y}\:+\:{az}\:=\:{a}^{\mathrm{2}} \\ $$$${Find}\:\:{value}\:\:{of}\:\:{x},\:{y},\:{z}\:\:\:{in}\:\:{a}\:. \\ $$
Question Number 154846 Answers: 0 Comments: 2
$${y}'=\frac{{y}\:{cos}\left({x}\right)}{\mathrm{1}+\mathrm{2}{y}^{\mathrm{2}} } \\ $$$${trouve}\:{la}\:{solution}\:{de}\:{lequation}\:{differentielle} \\ $$
Question Number 154823 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{e}^{−{x}} }{\:{x}^{\frac{\mathrm{3}}{\mathrm{4}}} \:}\:{dx} \\ $$$$\: \\ $$
Question Number 154824 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{4}^{−{k}} \Gamma\left({k}\right)}{{k}!} \\ $$$$\: \\ $$
Question Number 154805 Answers: 0 Comments: 2
Question Number 154804 Answers: 2 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:+\:\mathrm{x}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{5}\sqrt{\mathrm{5}}\:-\:\mathrm{x}}\:=\:\sqrt[{\mathrm{5}}]{\mathrm{2}} \\ $$
Question Number 154794 Answers: 0 Comments: 1
Question Number 154786 Answers: 0 Comments: 0
$$\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)}{\mathrm{sin60}°}+\frac{\mathrm{sin}\left(\mathrm{x}+\mathrm{60}°\right)\centerdot\mathrm{sin30}°}{\mathrm{sin}\left(\mathrm{2x}+\mathrm{30}°\right)\centerdot\mathrm{sin60}°}=\frac{\mathrm{sinx}}{\mathrm{sin60}°}+\mathrm{1} \\ $$$$\mathrm{x}\in\left(\mathrm{0};\mathrm{60}°\right)\:\:\mathrm{x}=? \\ $$
Question Number 154785 Answers: 0 Comments: 3
$${soit}:\:{y}'+{tan}\left({x}\right){y}={sin}\left(\mathrm{2}{x}\right)\:,{avec} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1}\:\:\:{alors}\:{f}\left(\pi\right)=? \\ $$
Question Number 154780 Answers: 3 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{1}}{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$
Question Number 154781 Answers: 0 Comments: 0
Question Number 154777 Answers: 1 Comments: 0
Question Number 154776 Answers: 0 Comments: 1
$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}−\frac{\mathrm{sin}\:\left(\frac{\mathrm{1}}{{x}}\right)}{\frac{\mathrm{1}}{{x}}}}{{e}−\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} }\right)^{{x}} =? \\ $$
Question Number 154773 Answers: 0 Comments: 0
Question Number 154791 Answers: 1 Comments: 0
Question Number 154758 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}}{\mathrm{1}\:+\:\mathrm{xy}}\:\leqslant\:\sqrt{\mathrm{2}} \\ $$
Question Number 154749 Answers: 0 Comments: 0
Question Number 154748 Answers: 1 Comments: 0
Question Number 154741 Answers: 0 Comments: 4
$${I}\:{danced},\:{its}\:{a}\:{bit}\:{calculus}\:{based}! \\ $$$${I}\:{am}\:{all}\:{praises}\:{for}\:{Caro}\: \\ $$$${Emerald}'{s}\:{songs}. \\ $$
Question Number 154740 Answers: 1 Comments: 0
$$\mathrm{A}\:\mathrm{man}\:\mathrm{will}\:\mathrm{be}\:\left({x}+\mathrm{10}\right)\:\mathrm{years}\:\mathrm{in}\:\mathrm{8}\:\mathrm{years}\:\mathrm{time}. \\ $$$$\mathrm{If}\:\mathrm{2}\:\mathrm{years}\:\mathrm{ago}\:\mathrm{he}\:\mathrm{was}\:\mathrm{63}\:\mathrm{years},\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:{x}. \\ $$
Question Number 154736 Answers: 1 Comments: 1
Question Number 154734 Answers: 1 Comments: 0
$$\:\begin{cases}{\mathrm{x}=\left(\mathrm{y}−\mathrm{2}\right)\left(\mathrm{y}+\mathrm{2}\right)}\\{\mathrm{y}=\left(\mathrm{z}−\mathrm{2}\right)\left(\mathrm{z}+\mathrm{2}\right)}\\{\mathrm{z}=\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}+\mathrm{2}\right)}\end{cases}\:;\:\mathrm{x}\neq\mathrm{0},\:\mathrm{y}\neq\mathrm{0},\:\mathrm{z}\neq\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{5}} +\mathrm{y}^{\mathrm{5}} +\mathrm{z}^{\mathrm{5}} \:=? \\ $$
Question Number 154729 Answers: 0 Comments: 0
Pg 632 Pg 633 Pg 634 Pg 635 Pg 636 Pg 637 Pg 638 Pg 639 Pg 640 Pg 641
Terms of Service
Privacy Policy
Contact: info@tinkutara.com