Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 637

Question Number 155272    Answers: 0   Comments: 3

Question Number 155265    Answers: 1   Comments: 0

si E est la fonction partie entiere ,et n un entier naturel alors I=∫_o ^n E(x) vaut?

$${si}\:{E}\:{est}\:{la}\:{fonction}\:{partie}\:{entiere}\:,{et}\:{n}\:{un}\:{entier}\:{naturel} \\ $$$${alors}\:{I}=\int_{{o}} ^{{n}} {E}\left({x}\right)\:{vaut}? \\ $$

Question Number 155252    Answers: 1   Comments: 0

∫_0 ^( (π/2)) x.sin^( 2) (x).ln(sin(x))dx

$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.{sin}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$

Question Number 155244    Answers: 2   Comments: 0

Solve the equation: (sinx)^3 + sinx = cosx

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$ \\ $$$$\left(\mathrm{sin}\boldsymbol{\mathrm{x}}\right)^{\mathrm{3}} \:+\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:=\:\mathrm{cos}\boldsymbol{\mathrm{x}} \\ $$

Question Number 155243    Answers: 0   Comments: 2

the value of the integral ∫_(−1) ^( 1) x^2 p_2 (x) dx is ?

$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{integral}}\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} \:\boldsymbol{{x}}^{\mathrm{2}} \:\boldsymbol{{p}}_{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}\:\:\:\boldsymbol{{is}}\:?\: \\ $$

Question Number 155242    Answers: 1   Comments: 1

the value of 𝛃 (2, n ) is ?

$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\:\boldsymbol{\beta}\:\left(\mathrm{2},\:{n}\:\right)\:\boldsymbol{{is}}\:? \\ $$

Question Number 155238    Answers: 0   Comments: 0

Question Number 155236    Answers: 0   Comments: 0

Question Number 155237    Answers: 1   Comments: 0

If Ω = ∫_0 ^( ∞) (( ln^( 2) (x ).sin((√(x )) ))/x) dx prove that : Ω = 4 γ^( 2) + (π^( 3) /3) ■ m.n

$$ \\ $$$$\:\:\mathrm{I}{f}\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{ln}^{\:\mathrm{2}} \left({x}\:\right).{sin}\left(\sqrt{{x}\:}\:\right)}{{x}}\:{dx} \\ $$$$\:\:\:\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega\:=\:\mathrm{4}\:\gamma^{\:\mathrm{2}} \:+\:\frac{\pi^{\:\mathrm{3}} }{\mathrm{3}}\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$

Question Number 155231    Answers: 0   Comments: 0

f (x) :=(√((1/a) +x)) −(√((1/a) −x)) and D_f ≠ ∅ , g(x)=(√((ax−1)/(f^( −1) ( ax −a )))) find : D_( g) =?

$$ \\ $$$$\:\:\:{f}\:\left({x}\right)\::=\sqrt{\frac{\mathrm{1}}{{a}}\:+{x}}\:−\sqrt{\frac{\mathrm{1}}{{a}}\:−{x}} \\ $$$$\:\:{and}\:\:\:\:\mathrm{D}_{{f}} \:\neq\:\varnothing\:, \\ $$$$\:\:\:\:\:\:\:{g}\left({x}\right)=\sqrt{\frac{{ax}−\mathrm{1}}{{f}^{\:−\mathrm{1}} \left(\:{ax}\:−{a}\:\right)}} \\ $$$$\:\:\:\:\:\:\:\:{find}\::\:\:\mathrm{D}_{\:{g}} \:=? \\ $$

Question Number 155225    Answers: 0   Comments: 3

Question Number 155217    Answers: 0   Comments: 0

∫_(−∞) ^( ∞) ((ln((√(x^4 +1))))/( (√(x^4 +1)))) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{ln}\left(\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}\right)}{\:\sqrt{{x}^{\mathrm{4}} +\mathrm{1}}}\:\:{dx} \\ $$$$\: \\ $$

Question Number 155215    Answers: 2   Comments: 0

Question Number 155212    Answers: 0   Comments: 1

Question Number 155204    Answers: 3   Comments: 0

Solve for positive integers: abcd + abc = (a+1)(b+1)(c+1)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{positive}\:\mathrm{integers}: \\ $$$$\mathrm{abcd}\:+\:\mathrm{abc}\:=\:\left(\mathrm{a}+\mathrm{1}\right)\left(\mathrm{b}+\mathrm{1}\right)\left(\mathrm{c}+\mathrm{1}\right) \\ $$

Question Number 155203    Answers: 1   Comments: 0

Question Number 155196    Answers: 1   Comments: 2

Hi I forgot my password, is there a way I can get it ?

$${Hi}\:{I}\:{forgot}\:{my}\:{password},\: \\ $$$${is}\:{there}\:{a}\:{way}\:{I}\:{can}\:{get}\:{it}\:? \\ $$

Question Number 155194    Answers: 0   Comments: 0

Question Number 155193    Answers: 0   Comments: 0

x,y∈R^+ prove that (1/(x+y+1))−(1/((x+1)(y+1)))<(1/(11))

$$\mathrm{x},\mathrm{y}\in\mathrm{R}^{+} \:\:\mathrm{prove}\:\mathrm{that}\:\:\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}+\mathrm{1}}−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)}<\frac{\mathrm{1}}{\mathrm{11}} \\ $$

Question Number 155191    Answers: 0   Comments: 0

Question Number 155190    Answers: 1   Comments: 0

an atom of x with atomic number 9 has a mass of 18 with an abundsnce of 19%, a mass of 19 with an abundance of 3.5% and the remainder has a mass of 20. determine the relative mass of atom x?

$$\mathrm{an}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{x}\:\mathrm{with}\:\mathrm{atomic}\:\mathrm{number}\:\mathrm{9}\:\mathrm{has}\:\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of} \\ $$$$\mathrm{18}\:\mathrm{with}\:\mathrm{an}\:\mathrm{abundsnce}\:\mathrm{of}\:\mathrm{19\%},\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{19}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{abundance}\:\mathrm{of}\:\mathrm{3}.\mathrm{5\%}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{has}\:\mathrm{a}\: \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{20}.\:\mathrm{determine}\:\mathrm{the}\:\mathrm{relative}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{atom}\:\mathrm{x}? \\ $$

Question Number 155189    Answers: 1   Comments: 0

How to extract the coefficient of term “x^n y^m ” in (1+((yx)/(1−x)))(1−((yx)/(1−x)))^(−1) ?

$$\mathrm{How}\:\mathrm{to}\:\mathrm{extract}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\:\mathrm{term}\:``\mathrm{x}^{\mathrm{n}} \mathrm{y}^{\mathrm{m}} \:''\:\:\mathrm{in}\:\left(\mathrm{1}+\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)\left(\mathrm{1}−\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)^{−\mathrm{1}} ? \\ $$

Question Number 155183    Answers: 1   Comments: 0

Question Number 155182    Answers: 0   Comments: 0

Question Number 155180    Answers: 0   Comments: 0

Question Number 155174    Answers: 2   Comments: 0

Find n if: 133^5 +110^5 +84^5 +27^5 =n^5

$${Find}\:{n}\:{if}: \\ $$$$\mathrm{133}^{\mathrm{5}} +\mathrm{110}^{\mathrm{5}} +\mathrm{84}^{\mathrm{5}} +\mathrm{27}^{\mathrm{5}} ={n}^{\mathrm{5}} \\ $$

  Pg 632      Pg 633      Pg 634      Pg 635      Pg 636      Pg 637      Pg 638      Pg 639      Pg 640      Pg 641   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com