Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 635
Question Number 155194 Answers: 0 Comments: 0
Question Number 155193 Answers: 0 Comments: 0
$$\mathrm{x},\mathrm{y}\in\mathrm{R}^{+} \:\:\mathrm{prove}\:\mathrm{that}\:\:\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}+\mathrm{1}}−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)}<\frac{\mathrm{1}}{\mathrm{11}} \\ $$
Question Number 155191 Answers: 0 Comments: 0
Question Number 155190 Answers: 1 Comments: 0
$$\mathrm{an}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{x}\:\mathrm{with}\:\mathrm{atomic}\:\mathrm{number}\:\mathrm{9}\:\mathrm{has}\:\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of} \\ $$$$\mathrm{18}\:\mathrm{with}\:\mathrm{an}\:\mathrm{abundsnce}\:\mathrm{of}\:\mathrm{19\%},\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{19}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{abundance}\:\mathrm{of}\:\mathrm{3}.\mathrm{5\%}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{has}\:\mathrm{a}\: \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{20}.\:\mathrm{determine}\:\mathrm{the}\:\mathrm{relative}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{atom}\:\mathrm{x}? \\ $$
Question Number 155189 Answers: 1 Comments: 0
$$\mathrm{How}\:\mathrm{to}\:\mathrm{extract}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\:\mathrm{term}\:``\mathrm{x}^{\mathrm{n}} \mathrm{y}^{\mathrm{m}} \:''\:\:\mathrm{in}\:\left(\mathrm{1}+\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)\left(\mathrm{1}−\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)^{−\mathrm{1}} ? \\ $$
Question Number 155183 Answers: 1 Comments: 0
Question Number 155182 Answers: 0 Comments: 0
Question Number 155180 Answers: 0 Comments: 0
Question Number 155174 Answers: 2 Comments: 0
$${Find}\:{n}\:{if}: \\ $$$$\mathrm{133}^{\mathrm{5}} +\mathrm{110}^{\mathrm{5}} +\mathrm{84}^{\mathrm{5}} +\mathrm{27}^{\mathrm{5}} ={n}^{\mathrm{5}} \\ $$
Question Number 155165 Answers: 1 Comments: 0
Question Number 155164 Answers: 1 Comments: 0
$$\:\:\:{solve}.. \\ $$$$\:\:\:\:\:\:\:\:\:\lfloor\:\frac{\:{x}}{\mathrm{2}+\:\sqrt{{x}}}\:\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\left(\:{x}\in\:\mathbb{Z}\:\right) \\ $$$$ \\ $$
Question Number 155161 Answers: 0 Comments: 0
Question Number 155159 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{ln}}^{\boldsymbol{{n}}} \left({x}\right)\boldsymbol{{Li}}_{\boldsymbol{{n}}+\mathrm{1}} \left(−{x}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$
Question Number 155154 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{n}\in\mathbb{N}^{+} \:\:\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{y}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{y}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{4} \\ $$
Question Number 155146 Answers: 1 Comments: 0
$$\mathscr{L}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\left\{\frac{{x}}{{y}}\right\}\left\{\frac{{y}}{{z}}\right\}\left\{\frac{{z}}{{x}}\right\}\right)^{{n}} {dxdydz}=? \\ $$
Question Number 155144 Answers: 0 Comments: 3
$$ \\ $$$$\:\:{how}\:{many}\:{integer}\:{solutions}\: \\ $$$$\:\:\:\:{are}\:{there}\:: \\ $$$$\:\:\:\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{{x}}}\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$
Question Number 155264 Answers: 1 Comments: 0
$${en}\:{utilisant}\:{l}'{integrale}\:{de}\:{cauchy}\:{schwarz} \\ $$$${l}'{integrale}\:\int_{{o}} ^{\mathrm{1}} \frac{{f}\left({x}\right)}{{x}+\mathrm{1}}{dx}\:\:\:\:{est}\:{majoree}\:{par}? \\ $$$$ \\ $$
Question Number 155140 Answers: 0 Comments: 0
Question Number 155136 Answers: 0 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\boldsymbol{\mathrm{log}}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left(\boldsymbol{{n}}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}^{\boldsymbol{{n}}} }+\boldsymbol{\mathrm{log}}\left(\mathrm{2}\right)\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{2}^{\boldsymbol{{n}}} }+\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{4}} \mathrm{2}^{\boldsymbol{{n}}} }= \\ $$$$=\frac{\mathrm{23}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{6}\right)−\mathrm{2}\boldsymbol{\zeta}^{\mathrm{2}} \left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{18}}\boldsymbol{\mathrm{log}}^{\mathrm{6}} \left(\mathrm{2}\right) \\ $$$$\boldsymbol{{m}}.\boldsymbol{{A}} \\ $$
Question Number 155135 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)−\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)\right)−\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)\right)}\right)^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}}=? \\ $$
Question Number 155134 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{sin}}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \left({x}\right){dx}=? \\ $$
Question Number 155133 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 155132 Answers: 0 Comments: 0
Question Number 155130 Answers: 1 Comments: 0
Question Number 155126 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−\:\beta\:\left(\mathrm{2}{x}+{b}\right)^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} } \:{dx} \\ $$
Question Number 155122 Answers: 0 Comments: 2
Pg 630 Pg 631 Pg 632 Pg 633 Pg 634 Pg 635 Pg 636 Pg 637 Pg 638 Pg 639
Terms of Service
Privacy Policy
Contact: info@tinkutara.com