Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 635

Question Number 155194    Answers: 0   Comments: 0

Question Number 155193    Answers: 0   Comments: 0

x,y∈R^+ prove that (1/(x+y+1))−(1/((x+1)(y+1)))<(1/(11))

$$\mathrm{x},\mathrm{y}\in\mathrm{R}^{+} \:\:\mathrm{prove}\:\mathrm{that}\:\:\frac{\mathrm{1}}{\mathrm{x}+\mathrm{y}+\mathrm{1}}−\frac{\mathrm{1}}{\left(\mathrm{x}+\mathrm{1}\right)\left(\mathrm{y}+\mathrm{1}\right)}<\frac{\mathrm{1}}{\mathrm{11}} \\ $$

Question Number 155191    Answers: 0   Comments: 0

Question Number 155190    Answers: 1   Comments: 0

an atom of x with atomic number 9 has a mass of 18 with an abundsnce of 19%, a mass of 19 with an abundance of 3.5% and the remainder has a mass of 20. determine the relative mass of atom x?

$$\mathrm{an}\:\mathrm{atom}\:\mathrm{of}\:\mathrm{x}\:\mathrm{with}\:\mathrm{atomic}\:\mathrm{number}\:\mathrm{9}\:\mathrm{has}\:\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of} \\ $$$$\mathrm{18}\:\mathrm{with}\:\mathrm{an}\:\mathrm{abundsnce}\:\mathrm{of}\:\mathrm{19\%},\:\mathrm{a}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{19}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{abundance}\:\mathrm{of}\:\mathrm{3}.\mathrm{5\%}\:\mathrm{and}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{has}\:\mathrm{a}\: \\ $$$$\mathrm{mass}\:\mathrm{of}\:\mathrm{20}.\:\mathrm{determine}\:\mathrm{the}\:\mathrm{relative}\:\mathrm{mass}\:\mathrm{of}\:\mathrm{atom}\:\mathrm{x}? \\ $$

Question Number 155189    Answers: 1   Comments: 0

How to extract the coefficient of term “x^n y^m ” in (1+((yx)/(1−x)))(1−((yx)/(1−x)))^(−1) ?

$$\mathrm{How}\:\mathrm{to}\:\mathrm{extract}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\:\mathrm{term}\:``\mathrm{x}^{\mathrm{n}} \mathrm{y}^{\mathrm{m}} \:''\:\:\mathrm{in}\:\left(\mathrm{1}+\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)\left(\mathrm{1}−\frac{\mathrm{yx}}{\mathrm{1}−\mathrm{x}}\right)^{−\mathrm{1}} ? \\ $$

Question Number 155183    Answers: 1   Comments: 0

Question Number 155182    Answers: 0   Comments: 0

Question Number 155180    Answers: 0   Comments: 0

Question Number 155174    Answers: 2   Comments: 0

Find n if: 133^5 +110^5 +84^5 +27^5 =n^5

$${Find}\:{n}\:{if}: \\ $$$$\mathrm{133}^{\mathrm{5}} +\mathrm{110}^{\mathrm{5}} +\mathrm{84}^{\mathrm{5}} +\mathrm{27}^{\mathrm{5}} ={n}^{\mathrm{5}} \\ $$

Question Number 155165    Answers: 1   Comments: 0

Question Number 155164    Answers: 1   Comments: 0

solve.. ⌊ (( x)/(2+ (√x))) ⌋ = 3 ( x∈ Z )

$$\:\:\:{solve}.. \\ $$$$\:\:\:\:\:\:\:\:\:\lfloor\:\frac{\:{x}}{\mathrm{2}+\:\sqrt{{x}}}\:\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\left(\:{x}\in\:\mathbb{Z}\:\right) \\ $$$$ \\ $$

Question Number 155161    Answers: 0   Comments: 0

Question Number 155159    Answers: 0   Comments: 0

∫_0 ^1 ((ln^n (x)Li_(n+1) (−x))/(1+x^2 ))dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{ln}}^{\boldsymbol{{n}}} \left({x}\right)\boldsymbol{{Li}}_{\boldsymbol{{n}}+\mathrm{1}} \left(−{x}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$

Question Number 155154    Answers: 1   Comments: 0

let n∈N^+ solve for real numbers: x^(3n) - y^(2n) = y^(3n) - x^(2n) = 4

$$\mathrm{let}\:\:\mathrm{n}\in\mathbb{N}^{+} \:\:\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{y}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{y}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{4} \\ $$

Question Number 155146    Answers: 1   Comments: 0

L=∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ({(x/y)}{(y/z)}{(z/x)})^n dxdydz=?

$$\mathscr{L}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\left\{\frac{{x}}{{y}}\right\}\left\{\frac{{y}}{{z}}\right\}\left\{\frac{{z}}{{x}}\right\}\right)^{{n}} {dxdydz}=? \\ $$

Question Number 155144    Answers: 0   Comments: 3

how many integer solutions are there : ⌊ (1/(2+(√x)))⌋ = 3 ■

$$ \\ $$$$\:\:{how}\:{many}\:{integer}\:{solutions}\: \\ $$$$\:\:\:\:{are}\:{there}\:: \\ $$$$\:\:\:\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{{x}}}\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Question Number 155264    Answers: 1   Comments: 0

en utilisant l′integrale de cauchy schwarz l′integrale ∫_o ^1 ((f(x))/(x+1))dx est majoree par?

$${en}\:{utilisant}\:{l}'{integrale}\:{de}\:{cauchy}\:{schwarz} \\ $$$${l}'{integrale}\:\int_{{o}} ^{\mathrm{1}} \frac{{f}\left({x}\right)}{{x}+\mathrm{1}}{dx}\:\:\:\:{est}\:{majoree}\:{par}? \\ $$$$ \\ $$

Question Number 155140    Answers: 0   Comments: 0

Question Number 155136    Answers: 0   Comments: 0

prove that ((log^2 (2))/2)Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^2 2^n ))+log(2)Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^3 2^n ))+Σ_(n=1) ^∞ ((𝛟(n))/((n+1)^4 2^n ))= =((23)/8)𝛇(6)−2𝛇^2 (3)−(1/(18))log^6 (2) m.A

$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\boldsymbol{\mathrm{log}}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left(\boldsymbol{{n}}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}^{\boldsymbol{{n}}} }+\boldsymbol{\mathrm{log}}\left(\mathrm{2}\right)\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{2}^{\boldsymbol{{n}}} }+\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{4}} \mathrm{2}^{\boldsymbol{{n}}} }= \\ $$$$=\frac{\mathrm{23}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{6}\right)−\mathrm{2}\boldsymbol{\zeta}^{\mathrm{2}} \left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{18}}\boldsymbol{\mathrm{log}}^{\mathrm{6}} \left(\mathrm{2}\right) \\ $$$$\boldsymbol{{m}}.\boldsymbol{{A}} \\ $$

Question Number 155135    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 (((log((1/x))−log((1/y)))/(log(log((1/x)))−log(log((1/y))))))^2 dxdy=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)−\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)\right)−\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)\right)}\right)^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}}=? \\ $$

Question Number 155134    Answers: 1   Comments: 0

∫_0 ^(π/2) sin^(2n) (x)dx=?

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{sin}}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \left({x}\right){dx}=? \\ $$

Question Number 155133    Answers: 2   Comments: 0

Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 ))=?

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$

Question Number 155132    Answers: 0   Comments: 0

Question Number 155130    Answers: 1   Comments: 0

Question Number 155126    Answers: 0   Comments: 0

∫_0 ^( ∞) e^(− β (2x+b)^(1/a) ) dx

$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−\:\beta\:\left(\mathrm{2}{x}+{b}\right)^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} } \:{dx} \\ $$

Question Number 155122    Answers: 0   Comments: 2

  Pg 630      Pg 631      Pg 632      Pg 633      Pg 634      Pg 635      Pg 636      Pg 637      Pg 638      Pg 639   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com