Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 635
Question Number 155182 Answers: 0 Comments: 0
Question Number 155180 Answers: 0 Comments: 0
Question Number 155174 Answers: 2 Comments: 0
$${Find}\:{n}\:{if}: \\ $$$$\mathrm{133}^{\mathrm{5}} +\mathrm{110}^{\mathrm{5}} +\mathrm{84}^{\mathrm{5}} +\mathrm{27}^{\mathrm{5}} ={n}^{\mathrm{5}} \\ $$
Question Number 155165 Answers: 1 Comments: 0
Question Number 155164 Answers: 1 Comments: 0
$$\:\:\:{solve}.. \\ $$$$\:\:\:\:\:\:\:\:\:\lfloor\:\frac{\:{x}}{\mathrm{2}+\:\sqrt{{x}}}\:\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\left(\:{x}\in\:\mathbb{Z}\:\right) \\ $$$$ \\ $$
Question Number 155161 Answers: 0 Comments: 0
Question Number 155159 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{ln}}^{\boldsymbol{{n}}} \left({x}\right)\boldsymbol{{Li}}_{\boldsymbol{{n}}+\mathrm{1}} \left(−{x}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}}=? \\ $$
Question Number 155154 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{n}\in\mathbb{N}^{+} \:\:\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{y}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{y}^{\mathrm{3}\boldsymbol{\mathrm{n}}} \:-\:\mathrm{x}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \:=\:\mathrm{4} \\ $$
Question Number 155146 Answers: 1 Comments: 0
$$\mathscr{L}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\left\{\frac{{x}}{{y}}\right\}\left\{\frac{{y}}{{z}}\right\}\left\{\frac{{z}}{{x}}\right\}\right)^{{n}} {dxdydz}=? \\ $$
Question Number 155144 Answers: 0 Comments: 3
$$ \\ $$$$\:\:{how}\:{many}\:{integer}\:{solutions}\: \\ $$$$\:\:\:\:{are}\:{there}\:: \\ $$$$\:\:\:\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{{x}}}\rfloor\:=\:\mathrm{3}\:\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$
Question Number 155264 Answers: 1 Comments: 0
$${en}\:{utilisant}\:{l}'{integrale}\:{de}\:{cauchy}\:{schwarz} \\ $$$${l}'{integrale}\:\int_{{o}} ^{\mathrm{1}} \frac{{f}\left({x}\right)}{{x}+\mathrm{1}}{dx}\:\:\:\:{est}\:{majoree}\:{par}? \\ $$$$ \\ $$
Question Number 155140 Answers: 0 Comments: 0
Question Number 155136 Answers: 0 Comments: 0
$$\boldsymbol{{prove}}\:\boldsymbol{{that}} \\ $$$$\frac{\boldsymbol{\mathrm{log}}^{\mathrm{2}} \left(\mathrm{2}\right)}{\mathrm{2}}\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left(\boldsymbol{{n}}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}^{\boldsymbol{{n}}} }+\boldsymbol{\mathrm{log}}\left(\mathrm{2}\right)\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{3}} \mathrm{2}^{\boldsymbol{{n}}} }+\underset{\boldsymbol{{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\varphi}\left({n}\right)}{\left(\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{4}} \mathrm{2}^{\boldsymbol{{n}}} }= \\ $$$$=\frac{\mathrm{23}}{\mathrm{8}}\boldsymbol{\zeta}\left(\mathrm{6}\right)−\mathrm{2}\boldsymbol{\zeta}^{\mathrm{2}} \left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{18}}\boldsymbol{\mathrm{log}}^{\mathrm{6}} \left(\mathrm{2}\right) \\ $$$$\boldsymbol{{m}}.\boldsymbol{{A}} \\ $$
Question Number 155135 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)−\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\right)\right)−\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{log}}\left(\frac{\mathrm{1}}{\boldsymbol{\mathrm{y}}}\right)\right)}\right)^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}}=? \\ $$
Question Number 155134 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \boldsymbol{\mathrm{sin}}^{\mathrm{2}\boldsymbol{\mathrm{n}}} \left({x}\right){dx}=? \\ $$
Question Number 155133 Answers: 2 Comments: 0
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{3}} }=? \\ $$
Question Number 155132 Answers: 0 Comments: 0
Question Number 155130 Answers: 1 Comments: 0
Question Number 155126 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\:\infty} \:{e}^{−\:\beta\:\left(\mathrm{2}{x}+{b}\right)^{\frac{\mathrm{1}}{\boldsymbol{{a}}}} } \:{dx} \\ $$
Question Number 155122 Answers: 0 Comments: 2
Question Number 155120 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{lim}_{\:{x}\:\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:−\:{cot}^{\:\mathrm{2}} \left({x}\right)\right)=? \\ $$$$ \\ $$
Question Number 155153 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{in}\:\mathbb{R} \\ $$$$\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{x}\:+\:\mathrm{1}\right)}\:=\:\mathrm{1}\:+\:\sqrt{\mathrm{x}}\:-\:\mathrm{x} \\ $$
Question Number 155109 Answers: 1 Comments: 0
$$\mathrm{how}\:\mathrm{many}\:\mathrm{terms}\:\mathrm{contain}\:``\:\mathrm{ab}^{\mathrm{2}} \mathrm{c}^{\mathrm{3}} \:''\:\mathrm{in}\:\left(\mathrm{a}+\mathrm{2b}+\mathrm{3c}+\mathrm{4d}^{\mathrm{2}} +\mathrm{5e}^{\mathrm{3}} \right)^{\mathrm{10}} \:? \\ $$
Question Number 155106 Answers: 1 Comments: 3
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}+\mathrm{y}}\:-\:\sqrt{\mathrm{x}-\mathrm{y}}\:+\:\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{5}}\\{\mathrm{2x}\:+\:\mathrm{3}\sqrt{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} }\:=\:\mathrm{19}}\end{cases} \\ $$
Question Number 155101 Answers: 1 Comments: 3
$${soit}:\:{y}\:{y}'+{xy}^{\mathrm{2}} +{x}=\mathrm{0}\:,{avec}\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${f}''\left(\mathrm{0}\right)=? \\ $$
Question Number 155100 Answers: 1 Comments: 2
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{triangle}\:\mathrm{with}: \\ $$$$\mathrm{1}.\mathrm{The}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{sides}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{is}\:\mathrm{prime}\:\mathrm{number}. \\ $$$$\mathrm{2}.\mathrm{The}\:\mathrm{semiperimetr}\:\mathrm{is}\:\mathrm{positive}\:\mathrm{integer} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{area}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{with}\:\mathrm{perimetr}. \\ $$
Pg 630 Pg 631 Pg 632 Pg 633 Pg 634 Pg 635 Pg 636 Pg 637 Pg 638 Pg 639
Terms of Service
Privacy Policy
Contact: info@tinkutara.com