Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 629
Question Number 155461 Answers: 0 Comments: 0
Question Number 155450 Answers: 2 Comments: 0
Question Number 155438 Answers: 0 Comments: 0
Question Number 155436 Answers: 0 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{S}\:=\:\underset{{m}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\underset{{n}=\mathrm{0}} {\overset{{m}} {\sum}}\:\mathrm{10}^{{n}} +\:{m}} \\ $$$$\: \\ $$
Question Number 155428 Answers: 2 Comments: 0
$${simplify} \\ $$$${t}=\left(\frac{\mathrm{26}}{\mathrm{3}\sqrt{\mathrm{3}}}+\mathrm{5}\right)^{\mathrm{1}/\mathrm{3}} −\left(\frac{\mathrm{26}}{\mathrm{3}\sqrt{\mathrm{3}}}−\mathrm{5}\right)^{\mathrm{1}/\mathrm{3}} \\ $$
Question Number 155426 Answers: 1 Comments: 2
Question Number 155420 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{42}}+\frac{\mathrm{1}}{\mathrm{72}}+\frac{\mathrm{1}}{\mathrm{110}}+\ldots=? \\ $$
Question Number 155400 Answers: 0 Comments: 1
$${x}^{\mathrm{2}} +{x}+\mathrm{5}{xy}+\mathrm{6}{y}^{\mathrm{2}} +\mathrm{2}{y}−\mathrm{2}=\mathrm{0} \\ $$
Question Number 155399 Answers: 2 Comments: 0
Question Number 155393 Answers: 1 Comments: 0
$$\:\:\mid\mid\mathrm{x}−\mathrm{4}\mid−\mathrm{4}\mid\:\geqslant\:\mathrm{4}\: \\ $$
Question Number 155392 Answers: 0 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\left({a}^{{x}+\mathrm{1}} +{b}^{{x}+\mathrm{1}} \right)^{\mathrm{2}} }{{a}+{b}}\right)^{\frac{\mathrm{1}}{{x}}} =\ldots? \\ $$
Question Number 155386 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{H}_{\boldsymbol{\mathrm{k}}} \right)^{\mathrm{3}} }{\mathrm{2}^{\boldsymbol{\mathrm{k}}} }\:=\:\frac{\mathrm{3}\zeta\left(\mathrm{3}\right)\:+\:\mathrm{ln}^{\mathrm{3}} \mathrm{2}\:+\:\pi^{\mathrm{2}} \mathrm{ln2}}{\mathrm{3}}\:\: \\ $$
Question Number 155384 Answers: 2 Comments: 1
$$\boldsymbol{{Solve}}\::\:\boldsymbol{{x}}^{\mathrm{2}} \:−\:\left(\mathrm{5}−\boldsymbol{{i}}\right)\boldsymbol{{x}}\:+\:\left(\mathrm{12}−\mathrm{5}\boldsymbol{{i}}\right)\:=\:\mathrm{0} \\ $$
Question Number 156093 Answers: 2 Comments: 0
Question Number 155382 Answers: 1 Comments: 0
Question Number 155381 Answers: 1 Comments: 5
Question Number 155377 Answers: 2 Comments: 0
$$\mathrm{For}\:\mathrm{two}\:\mathrm{non}-\mathrm{negative}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{a}^{\mathrm{6}} \:+\:\mathrm{b}^{\mathrm{6}} \:=\:\mathrm{2} \\ $$$$\mathrm{Find}\:\:\mathrm{a};\mathrm{b}\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{3}\left(\mathrm{a}+\mathrm{b}\right)=\mathrm{1}+\mathrm{5}\sqrt{\mathrm{ab}} \\ $$
Question Number 155372 Answers: 1 Comments: 4
Question Number 155365 Answers: 2 Comments: 0
$$\:{y}=\frac{\mathrm{10}}{\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{5}} } \\ $$$$\:{find}\:\:\frac{{dy}}{{dx}} \\ $$
Question Number 155362 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:=\:\mathrm{17}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{15}\left(\mathrm{a}\:+\:\mathrm{b}\right)\:\geqslant\:\mathrm{17}\:+\:\mathrm{14}\sqrt{\mathrm{2ab}} \\ $$$$ \\ $$
Question Number 155361 Answers: 0 Comments: 0
$${x}−\mathrm{4}{z}+\mathrm{8}{y}=\mathrm{7} \\ $$$$\mathrm{8}×+\mathrm{7}{z}−{y}=\mathrm{4} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{z}^{\mathrm{2}} =? \\ $$
Question Number 155360 Answers: 1 Comments: 0
Question Number 155359 Answers: 0 Comments: 1
Question Number 155357 Answers: 1 Comments: 1
Question Number 155356 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\mathrm{term}\:``\:\mathrm{a}^{\mathrm{m}} \mathrm{b}^{\mathrm{2m}} \:''\:\mathrm{in}\:\left(\mathrm{1}+\mathrm{a}\right)^{\mathrm{m}} \left(\mathrm{1}+\mathrm{b}\right)^{\mathrm{n}+\mathrm{m}} \left(\mathrm{1}+\mathrm{a}+\mathrm{b}\right)^{\mathrm{m}} . \\ $$
Question Number 155353 Answers: 2 Comments: 0
$$\boldsymbol{{show}}\:\boldsymbol{{that}}\:\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \frac{\boldsymbol{{sinx}}}{\boldsymbol{{x}}}\:=\:\mathrm{1} \\ $$
Pg 624 Pg 625 Pg 626 Pg 627 Pg 628 Pg 629 Pg 630 Pg 631 Pg 632 Pg 633
Terms of Service
Privacy Policy
Contact: info@tinkutara.com