Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 629
Question Number 157046 Answers: 0 Comments: 1
$${q}=\left\{{a}+\left(\frac{{a}}{\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{108}}−{a}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} \right\}^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:+\left\{{b}+\left(\frac{{b}}{\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{108}}−{b}^{\mathrm{3}} \right)^{\mathrm{1}/\mathrm{3}} \right\}^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:{a}=\frac{\mathrm{9}+\sqrt{\mathrm{37}}}{\mathrm{72}}\:\:\:,\:\:{b}=\frac{\mathrm{9}−\sqrt{\mathrm{37}}}{\mathrm{72}} \\ $$$$\:{find}\:\boldsymbol{{q}}\:{correct}\:{to}\:\mathrm{5}\:{decimal} \\ $$$$\:{places}. \\ $$
Question Number 157045 Answers: 1 Comments: 1
Question Number 157044 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\left(\mathrm{sin2}\boldsymbol{\mathrm{x}}\:+\:\mathrm{4cos}^{\mathrm{2}} \boldsymbol{\mathrm{x}}\:+\:\mathrm{1}\right)\left(\mathrm{cos5}\boldsymbol{\mathrm{x}}\:-\:\mathrm{cos}\boldsymbol{\mathrm{x}}\right)<\mathrm{0} \\ $$
Question Number 157035 Answers: 1 Comments: 4
Question Number 157033 Answers: 3 Comments: 1
$${y}''=−{y} \\ $$
Question Number 157031 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{xcos}\:\theta+\mathrm{ycos}\:\emptyset+\mathrm{zcos}\:\psi=\mathrm{0}, \\ $$$$\:\:\:\:\:\:\mathrm{xsin}\:\theta+\mathrm{ysin}\:\emptyset+\mathrm{zsin}\:\psi=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{xsec}\:\theta+\mathrm{ysec}\:\emptyset+\mathrm{zsec}\:\psi=\mathrm{0} \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{z}^{\mathrm{2}} \right)^{\mathrm{2}} =\:\mathrm{4x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \\ $$
Question Number 157057 Answers: 1 Comments: 2
$$\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{13}}+\frac{\mathrm{1}}{\mathrm{19}}={a} \\ $$$${find}\:\frac{\mathrm{2}}{\mathrm{7}}+\frac{\mathrm{4}}{\mathrm{13}}+\frac{\mathrm{6}}{\mathrm{19}}=? \\ $$
Question Number 157021 Answers: 1 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\left(\boldsymbol{\mathrm{n}}\right)\:=\underset{\:\mathrm{1}} {\overset{\:\boldsymbol{\mathrm{n}}} {\int}}\left(\left[\mathrm{x}\right]^{\mathrm{2}} \centerdot\left\{\mathrm{x}\right\}\:+\:\left[\mathrm{x}\right]\centerdot\left\{\mathrm{x}\right\}^{\mathrm{2}} \right)\mathrm{dx} \\ $$$$\mathrm{n}\in\mathbb{N}\:\:;\:\:\left[\ast\right]-\mathrm{GIF}\:\:;\:\:\left\{\mathrm{x}\right\}=\mathrm{x}-\left[\mathrm{x}\right] \\ $$
Question Number 157016 Answers: 1 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{{x}} }+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3}^{{x}} }+\frac{\mathrm{1}}{\mathrm{4}^{{x}} +\mathrm{1}}\:\: \\ $$$${find}\:\:\:\int_{\mathrm{1}} ^{\mathrm{5}} {f}\left({x}\right){dx}+\int_{−\mathrm{5}} ^{−\mathrm{1}} {f}\left({x}\right){dx} \\ $$
Question Number 157010 Answers: 0 Comments: 3
Question Number 157007 Answers: 1 Comments: 1
Question Number 157006 Answers: 1 Comments: 0
$$\sqrt{\mathrm{4}+\mathrm{27}\sqrt{\mathrm{4}+\mathrm{29}\sqrt{\mathrm{4}+\mathrm{31}\sqrt{\mathrm{4}+\ldots}}}}=? \\ $$$$ \\ $$
Question Number 156992 Answers: 1 Comments: 1
Question Number 156991 Answers: 1 Comments: 0
Question Number 156979 Answers: 2 Comments: 2
Question Number 156977 Answers: 0 Comments: 0
$$\:\begin{cases}{{a}_{\mathrm{1}} =\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\\{{a}_{{n}+\mathrm{1}} =\mathrm{4}{a}_{{n}} ^{\mathrm{3}} −\mathrm{3}{a}_{{n}} \:;\:\forall{n}\geqslant\mathrm{1}}\end{cases} \\ $$$$\:{a}_{{n}} =? \\ $$
Question Number 156973 Answers: 0 Comments: 1
Question Number 156993 Answers: 0 Comments: 3
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\underset{{n}} {\underbrace{\left({sin}\left({sin}\left({sin}\ldots\left({sin}\left({x}\right)\right)\ldots\right)}}\:\sqrt{{n}}=?\right.\right. \\ $$$$\mathrm{0}<{x}<\pi \\ $$
Question Number 157003 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\boldsymbol{\mathrm{n}}\in\mathbb{Z}^{+} \\ $$$$\mathrm{shov}\:\mathrm{that}\:\:\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{sin}\left(\mathrm{x}^{-\boldsymbol{\mathrm{n}}} \right)\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:\mathrm{dx}\:=\:\frac{\pi\boldsymbol{\gamma}}{\mathrm{2n}^{\mathrm{2}} }\: \\ $$$$\mathrm{where}\:\:\boldsymbol{\gamma}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{Euler}-\mathrm{Mascheroni}\:\mathrm{constan}\: \\ $$
Question Number 156969 Answers: 0 Comments: 0
Question Number 156968 Answers: 0 Comments: 0
Question Number 156966 Answers: 2 Comments: 1
Question Number 156962 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{3}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}\:+\:\mathrm{x}}}\:+\:\frac{\mathrm{x}}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }}\:=\:\mathrm{2}\:\sqrt[{\mathrm{3}}]{\mathrm{4}} \\ $$
Question Number 156961 Answers: 0 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\:-\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}{\left(\mathrm{1}\:+\:\mathrm{x}^{\mathrm{4}} \right)^{\mathrm{3}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 156951 Answers: 1 Comments: 7
$${solve}\:{for}\:{n}\in{N} \\ $$$$\left({n}−\mathrm{1}\right)!+\mathrm{1}={n}^{\mathrm{2}} \\ $$
Question Number 156942 Answers: 0 Comments: 0
Pg 624 Pg 625 Pg 626 Pg 627 Pg 628 Pg 629 Pg 630 Pg 631 Pg 632 Pg 633
Terms of Service
Privacy Policy
Contact: info@tinkutara.com