Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 629
Question Number 155572 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{Z}^{\mathrm{4}} =\mathrm{1}. \\ $$$$\mathrm{Hence}\:\mathrm{show}\:\mathrm{that}\:\mathrm{1}+\mathrm{w}+\mathrm{w}^{\mathrm{2}} +\mathrm{w}^{\mathrm{3}} =\mathrm{0} \\ $$
Question Number 155571 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{root}\:\mathrm{of}\:\mathrm{one}\:.\mathrm{Hence} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{root}\:\mathrm{is}\: \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{zero} \\ $$
Question Number 155568 Answers: 2 Comments: 0
$${for}\:{a},{b},{c},{d},{e}\:\in{R}\:{and}\:{a}+{b}+{c}+{d}+{e}=\mathrm{5} \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$${a}^{\mathrm{2}} +\mathrm{2}{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} +\mathrm{4}{d}^{\mathrm{2}} +\mathrm{5}{e}^{\mathrm{2}} =? \\ $$
Question Number 155562 Answers: 1 Comments: 2
Question Number 155561 Answers: 1 Comments: 0
Question Number 155560 Answers: 0 Comments: 0
Question Number 155553 Answers: 0 Comments: 0
$$\: \\ $$$$\int_{−\infty} ^{\:\infty} \:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} \right)\mathrm{cos}\left({x}^{\mathrm{3}} \right)}{\left(\mathrm{ln}\left(\left(\mathrm{sin}\left({x}\right)\mathrm{cos}\left({x}\right)\right)^{\mathrm{2}} \right)\right)^{\mathrm{2}} +\mathrm{1}}\:\:{dx}\:\: \\ $$$$\: \\ $$
Question Number 155547 Answers: 1 Comments: 0
$$\mathrm{let}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{3} \\ $$$$\mathrm{find}\:\mathrm{min}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{S}\:=\:\mathrm{abc}\:+\:\left(\mathrm{a}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{b}-\mathrm{1}\right)^{\mathrm{2}} \:+\:\left(\mathrm{c}-\mathrm{1}\right)^{\mathrm{2}} \\ $$
Question Number 155545 Answers: 1 Comments: 6
$$\mathrm{Solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{5x}}{\:\sqrt{\mathrm{5x}^{\mathrm{2}} \:+\:\mathrm{4}}\:+\:\mathrm{7}\sqrt{\mathrm{x}}}\:+\:\frac{\mathrm{x}\:+\:\mathrm{2}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{3x}\:-\:\mathrm{18}}\:+\:\mathrm{2}\sqrt{\mathrm{x}}} \\ $$
Question Number 155542 Answers: 1 Comments: 4
$${find}\:{the}\:{tylor}\:{series}\:{expantion}\:{of}\:\frac{{z}^{\mathrm{2}} −\mathrm{1}}{\left({z}+\mathrm{1}\right)\left({z}+\mathrm{3}\right)} \\ $$
Question Number 155541 Answers: 0 Comments: 0
$${form}\:{a}\:{partial}\:{equation}\:{from}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{y}^{\mathrm{2}} }{\mathrm{2}}={z}^{\mathrm{2}} \\ $$
Question Number 155540 Answers: 1 Comments: 0
$$\:\:\mathrm{f}\left(\mathrm{5}−\mathrm{4x}\right)=\mathrm{27x}^{\mathrm{2000}} −\mathrm{2187x}^{\mathrm{204}} −\mathrm{x}^{\mathrm{4}} +\mathrm{3x}+\mathrm{8} \\ $$$$\mathrm{f}\left(\mathrm{3x}−\mathrm{7}\right)=? \\ $$
Question Number 155537 Answers: 1 Comments: 0
Question Number 155533 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{coefficiient}\:{of}\:\:\:\:{x}^{\:\mathrm{60}} \:=\:? \\ $$$$ \\ $$$$\:\:\:\mathrm{P}\:=\:\left({x}−\mathrm{1}\right)\left({x}^{\:\mathrm{2}} −\mathrm{1}\right)\left({x}^{\:\mathrm{3}} −\mathrm{1}\right)...\left({x}^{\:\mathrm{15}} −\mathrm{1}\right) \\ $$$$ \\ $$
Question Number 155531 Answers: 0 Comments: 4
Question Number 155524 Answers: 0 Comments: 1
$$\boldsymbol{{how}}\:\boldsymbol{{can}}\:\boldsymbol{{convert}}\:\boldsymbol{{the}}\:\boldsymbol{{interval}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{intigral}}\: \\ $$$$\int_{\mathrm{0}} ^{\:\mathrm{1}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}\:\boldsymbol{{to}}\:\boldsymbol{{the}}\:\boldsymbol{{interval}}\:\int_{\mathrm{0}} ^{\:\infty} \:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}\:? \\ $$
Question Number 155527 Answers: 2 Comments: 0
$$\mathrm{If}\:{f}\left(\mathrm{tan}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right)=\:\frac{\mathrm{2}}{\mathrm{1}+\mathrm{cos}\:\theta}\:,\:\mathrm{find}\:{f}\left(\mathrm{sin}\:\frac{\theta}{\mathrm{2}}\right). \\ $$
Question Number 155510 Answers: 1 Comments: 0
Question Number 155506 Answers: 1 Comments: 0
Question Number 155500 Answers: 2 Comments: 0
Question Number 155497 Answers: 1 Comments: 0
Question Number 155496 Answers: 1 Comments: 0
$${Given}\:{I}_{{n}} =\underset{{n}\pi} {\overset{\left({n}+\mathrm{1}\right)\pi} {\int}}{e}^{−{x}} {sinx}\:{dx}\:,\:{n}\in\mathbb{N}. \\ $$$$\mathrm{1}.\:{Find}\:{a}\:{relation}\:{between}\:{I}_{{n}+\mathrm{1}} {and}\:{I}_{{n}} . \\ $$
Question Number 155495 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c};\mathrm{d}\in\mathbb{R}\:\:\mathrm{verify}\:\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}+\mathrm{4d}=\mathrm{6} \\ $$$$\mathrm{then}\:\mathrm{find}\:\:\boldsymbol{\mathrm{min}}\left(\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} \right) \\ $$
Question Number 155488 Answers: 1 Comments: 0
Question Number 155481 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}\in\left[\mathrm{1};\infty\right) \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\:\mathrm{a}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{a}}}} \:;\:\mathrm{b}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{b}}}} \:;\:\mathrm{c}^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{c}}}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}. \\ $$
Question Number 155480 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{solution} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:=\:\mathrm{911}\left(\mathrm{xy}\:+\:\mathrm{49}\right) \\ $$
Pg 624 Pg 625 Pg 626 Pg 627 Pg 628 Pg 629 Pg 630 Pg 631 Pg 632 Pg 633
Terms of Service
Privacy Policy
Contact: info@tinkutara.com