Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 625
Question Number 153870 Answers: 1 Comments: 3
$$\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{5}}{{f}\left(\theta\right)+\mathrm{3}}\:\mathrm{where}\:{f}\left(\theta\right)=\mathrm{8cos}\:\theta−\mathrm{15}\:\mathrm{sin}\:\theta \\ $$
Question Number 153864 Answers: 0 Comments: 1
Question Number 153866 Answers: 1 Comments: 0
$$\mathrm{3}+\sqrt{\mathrm{3}+\sqrt{\mathrm{6}+\sqrt{\mathrm{9}+\sqrt{\mathrm{12}+\ldots+\sqrt{\mathrm{99}}}}}}=? \\ $$
Question Number 153862 Answers: 0 Comments: 0
Question Number 153860 Answers: 1 Comments: 0
Question Number 153858 Answers: 2 Comments: 1
Question Number 153857 Answers: 1 Comments: 1
Question Number 153847 Answers: 2 Comments: 0
$$\boldsymbol{\mathrm{S}}\:=\:\mathrm{x}\:+\:\mathrm{2x}^{\mathrm{2}} \:+\:...\:+\:\mathrm{nx}^{\boldsymbol{\mathrm{n}}} \\ $$$$ \\ $$
Question Number 153840 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{log}\:_{{e}} \left({x}\right)+\mathrm{log}\:_{{x}} \left({e}\right)+\mathrm{log}\:_{\left(\frac{{e}}{{x}}\right)} \left({x}\right)=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:{x}=? \\ $$
Question Number 153839 Answers: 1 Comments: 1
Question Number 153829 Answers: 0 Comments: 0
$$\mathrm{L}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{6}}{\pi^{\mathrm{2}} }\left(\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{log}\left(\mathrm{x}\right)\mathrm{log}\left(\mathrm{1}-\mathrm{x}\right)\right. \\ $$$$\mathrm{Find}:\:\:\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\mathrm{L}\left(\mathrm{x}\right)\centerdot\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\:\mathrm{dx} \\ $$
Question Number 153842 Answers: 0 Comments: 0
Question Number 153817 Answers: 0 Comments: 3
Question Number 153808 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{0}<\mathrm{a}\leqslant\mathrm{b}<\mathrm{1}\:\:\mathrm{then}: \\ $$$$\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\:\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\left(\frac{\mathrm{1}\:-\:\mathrm{xyz}}{\mathrm{1}\:+\:\mathrm{xyz}}\right)^{\mathrm{3}} \mathrm{dxdydz}\:\geqslant\:\left(\underset{\boldsymbol{\mathrm{a}}} {\overset{\:\boldsymbol{\mathrm{b}}} {\int}}\frac{\mathrm{1}\:-\:\mathrm{x}^{\mathrm{3}} }{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{3}} }\:\mathrm{dx}\right)^{\mathrm{3}} \\ $$
Question Number 153803 Answers: 1 Comments: 1
$${solve}\:{for}\:{x} \\ $$$${cos}^{\mathrm{2}} {x}\:−\:{cos}^{\mathrm{2}} \mathrm{2}{x}\:=\:{cos}^{\mathrm{2}} \mathrm{4}{x}\:−\:{cos}^{\mathrm{2}} \mathrm{3}{x} \\ $$
Question Number 153800 Answers: 2 Comments: 0
Question Number 153784 Answers: 0 Comments: 1
Question Number 153781 Answers: 1 Comments: 1
Question Number 153780 Answers: 1 Comments: 0
$$\:\lfloor\:\frac{\mathrm{125}}{\mathrm{12}}\:\rfloor\:=\mathrm{10}\:{or}\:\mathrm{11}\:? \\ $$
Question Number 153775 Answers: 1 Comments: 1
Question Number 153772 Answers: 1 Comments: 2
Question Number 153769 Answers: 1 Comments: 0
Question Number 153765 Answers: 2 Comments: 0
$$\:{Given}\:{f}:{R}\rightarrow{R}\:{is}\:{increasing}\:{positive} \\ $$$${function}\:{with}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{3}{x}\right)}{{f}\left({x}\right)}=\mathrm{1}\:.\: \\ $$$${What}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{f}\left(\mathrm{2}{x}\right)}{{f}\left({x}\right)}. \\ $$$$\left({A}\right)\:\mathrm{3}\:\:\:\:\:\left({B}\right)\:\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\left({C}\right)\:\mathrm{1}\:\:\:\:\:\left({D}\right)\frac{\mathrm{2}}{\mathrm{3}}\:\:\:\:\:\left({E}\right)\:\infty \\ $$
Question Number 153764 Answers: 1 Comments: 2
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{any}\:\mathrm{software}: \\ $$$$\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\sqrt{\mathrm{1}\:-\:\left(\frac{\mathrm{x}\:+\:\mathrm{y}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\mathrm{dxdy}\:>\:\frac{\pi}{\mathrm{4}} \\ $$
Question Number 153763 Answers: 1 Comments: 0
$$\mathrm{Determine}\:\mathrm{all}\:\mathrm{pairs}\:\left(\mathrm{x};\mathrm{y}\right)\:\mathrm{of}\:\mathrm{integers} \\ $$$$\mathrm{which}\:\mathrm{satisfy} \\ $$$$\mid\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{y}^{\mathrm{2}} \mid\:-\:\sqrt{\mathrm{16y}\:+\:\mathrm{1}}\:=\:\mathrm{0} \\ $$
Question Number 153760 Answers: 1 Comments: 0
$$\int\:\mathrm{sin}^{\mathrm{2}} \mathrm{4}{x}\:\mathrm{cos}\:\mathrm{4}{x}\:{dx}= \\ $$
Pg 620 Pg 621 Pg 622 Pg 623 Pg 624 Pg 625 Pg 626 Pg 627 Pg 628 Pg 629
Terms of Service
Privacy Policy
Contact: info@tinkutara.com