Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 625

Question Number 156836    Answers: 0   Comments: 0

Question Number 156809    Answers: 2   Comments: 1

Solve in R x^2 + 4x = (√(40x^2 + 32x - 16))

$$\mathrm{Solve}\:\mathrm{in}\:\mathbb{R} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4x}\:=\:\sqrt{\mathrm{40x}^{\mathrm{2}} \:+\:\mathrm{32x}\:-\:\mathrm{16}} \\ $$

Question Number 156808    Answers: 0   Comments: 1

Find: 𝛀 =∫ ((x^7 - x^5 + x^3 - x)/(1 + x^(10) )) dx ; x∈R

$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:=\int\:\frac{\mathrm{x}^{\mathrm{7}} \:-\:\mathrm{x}^{\mathrm{5}} \:+\:\mathrm{x}^{\mathrm{3}} \:-\:\mathrm{x}}{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{10}} }\:\mathrm{dx}\:\:;\:\:\mathrm{x}\in\mathbb{R} \\ $$

Question Number 156805    Answers: 0   Comments: 0

Question Number 156795    Answers: 2   Comments: 0

prove Σ_(n=0) ^∞ (sinx)^(2n) =sec^2 x ???

$${prove}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({sinx}\right)^{\mathrm{2}{n}} ={sec}^{\mathrm{2}} {x}\:??? \\ $$

Question Number 156793    Answers: 1   Comments: 0

∫_0 ^( (π/2)) ((sin2x)/(2−sin^2 2x))dx

$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{sin}\mathrm{2}{x}}{\mathrm{2}−{sin}^{\mathrm{2}} \mathrm{2}{x}}{dx} \\ $$

Question Number 156789    Answers: 0   Comments: 1

Question Number 156788    Answers: 3   Comments: 0

lim_(x→1) ((x+x^2 +x^3 +.....x^n −n)/(x+x^2 +x^3 +.....x^m −m))=? (0/0)

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.....{x}^{{n}} −{n}}{{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.....{x}^{{m}} −{m}}=?\:\:\:\:\frac{\mathrm{0}}{\mathrm{0}} \\ $$

Question Number 156779    Answers: 2   Comments: 0

∫((ln(1+x^2 ))/(1+x^2 ))

$$\int\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

Question Number 156761    Answers: 2   Comments: 0

prove that ∫((a + b sin x)/((b + a sin x)^2 ))dx=((−cos x)/(b + a sin x))

$${prove}\:{that} \\ $$$$\int\frac{{a}\:+\:{b}\:\mathrm{sin}\:{x}}{\left({b}\:+\:{a}\:\mathrm{sin}\:{x}\right)^{\mathrm{2}} }{dx}=\frac{−\mathrm{cos}\:{x}}{{b}\:+\:{a}\:\mathrm{sin}\:{x}} \\ $$

Question Number 156807    Answers: 1   Comments: 3

f(x)=arctg(1/(x^2 +x+1)) and α=f(1)+f(2)+…+f(21) find tg(α)=?

$${f}\left({x}\right)={arctg}\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:\:{and}\:\alpha={f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+\ldots+{f}\left(\mathrm{21}\right) \\ $$$${find}\:\:{tg}\left(\alpha\right)=? \\ $$

Question Number 156806    Answers: 1   Comments: 0

Question Number 156754    Answers: 1   Comments: 0

Question Number 156744    Answers: 2   Comments: 0

y“+y′=e^x +3x

$$\mathrm{y}``+\mathrm{y}'=\mathrm{e}^{\mathrm{x}} +\mathrm{3x} \\ $$$$ \\ $$

Question Number 156743    Answers: 2   Comments: 0

Question Number 156739    Answers: 0   Comments: 1

Question Number 156734    Answers: 1   Comments: 1

Question Number 156729    Answers: 1   Comments: 0

Question Number 156727    Answers: 1   Comments: 0

Question Number 156710    Answers: 1   Comments: 4

Question Number 156709    Answers: 1   Comments: 0

solve (x^3 )^(1/(1/x)) = 27

$$\boldsymbol{{solve}}\:\sqrt[{\frac{\mathrm{1}}{\boldsymbol{{x}}}}]{\boldsymbol{{x}}^{\mathrm{3}} }\:=\:\mathrm{27} \\ $$

Question Number 156695    Answers: 1   Comments: 0

∫sin(ln(x))dx=?

$$\int{sin}\left({ln}\left({x}\right)\right){dx}=? \\ $$

Question Number 156691    Answers: 1   Comments: 0

Show that (Σ_(k=1) ^n x_k y_k )^2 ≤(Σ_(k=1) ^n x_k ^2 )×(Σ_(k=1) ^n y_k ^2 )t

$${Show}\:{that} \\ $$$$\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} {y}_{{k}} \right)^{\mathrm{2}} \leqslant\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{k}} ^{\mathrm{2}} \right)×\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{y}_{{k}} ^{\mathrm{2}} \right){t} \\ $$

Question Number 156689    Answers: 0   Comments: 0

Question Number 156684    Answers: 2   Comments: 0

solve the D.E [1+e^(x/y) ]dx+e^(x/y) [1−(x/y)]dy=0 any one can help pls

$${solve}\:{the}\:{D}.{E}\: \\ $$$$\left[\mathrm{1}+{e}^{\frac{{x}}{{y}}} \right]{dx}+{e}^{\frac{{x}}{{y}}} \left[\mathrm{1}−\frac{{x}}{{y}}\right]{dy}=\mathrm{0} \\ $$$${any}\:{one}\:{can}\:{help}\:{pls} \\ $$

Question Number 156683    Answers: 1   Comments: 3

  Pg 620      Pg 621      Pg 622      Pg 623      Pg 624      Pg 625      Pg 626      Pg 627      Pg 628      Pg 629   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com