Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 625

Question Number 155352    Answers: 0   Comments: 0

Question Number 155345    Answers: 2   Comments: 1

Solve the equation in R ((5(√(x+1)))/( (√(1 - x + x^2 )) + 2(√(x + 1)))) = 4x^2 - 5x + 5

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{in}\:\mathbb{R} \\ $$$$\frac{\mathrm{5}\sqrt{\mathrm{x}+\mathrm{1}}}{\:\sqrt{\mathrm{1}\:-\:\mathrm{x}\:+\:\mathrm{x}^{\mathrm{2}} }\:+\:\mathrm{2}\sqrt{\mathrm{x}\:+\:\mathrm{1}}}\:=\:\mathrm{4x}^{\mathrm{2}} \:-\:\mathrm{5x}\:+\:\mathrm{5} \\ $$

Question Number 155344    Answers: 1   Comments: 0

Solve for integers: x^2 - 3x(y^2 + y - 1) + 4y^2 + 4y - 6 = 0

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$ \\ $$$$\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{3x}\left(\mathrm{y}^{\mathrm{2}} \:+\:\mathrm{y}\:-\:\mathrm{1}\right)\:+\:\mathrm{4y}^{\mathrm{2}} \:+\:\mathrm{4y}\:-\:\mathrm{6}\:=\:\mathrm{0} \\ $$

Question Number 155335    Answers: 1   Comments: 0

2x^5 + 3x^4 - 7x^3 - 7x^2 + 3x + 2 = 0 x_(1.2.3.4.5) = ?

$$\mathrm{2x}^{\mathrm{5}} \:+\:\mathrm{3x}^{\mathrm{4}} \:-\:\mathrm{7x}^{\mathrm{3}} \:-\:\mathrm{7x}^{\mathrm{2}} \:+\:\mathrm{3x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}} \:=\:? \\ $$

Question Number 155331    Answers: 1   Comments: 0

what is limit? also where we use it.

$$\mathrm{what}\:\mathrm{is}\:\mathrm{limit}?\:\mathrm{also}\:\mathrm{where}\:\mathrm{we}\:\mathrm{use}\:\mathrm{it}. \\ $$

Question Number 155323    Answers: 0   Comments: 0

Question Number 155316    Answers: 4   Comments: 0

lim_(x→∞) ((√(x^2 +3x))−x)=?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{x}}−{x}\right)=? \\ $$

Question Number 155403    Answers: 0   Comments: 0

Question Number 155337    Answers: 0   Comments: 0

Question Number 155310    Answers: 1   Comments: 0

lim U_n =Σ_(k=o) ^(n−1) ((n(ln(n+k))−ln(n))/(n^2 +k^2 ))

$$\mathrm{lim}\:\:\:\:{U}_{{n}} =\underset{{k}={o}} {\overset{{n}−\mathrm{1}} {\sum}}\:\:\frac{{n}\left({ln}\left({n}+{k}\right)\right)−{ln}\left({n}\right)}{{n}^{\mathrm{2}} +{k}^{\mathrm{2}} } \\ $$

Question Number 155302    Answers: 0   Comments: 0

Question Number 155295    Answers: 0   Comments: 2

Evaluate: lim_(n→∞) ((Σ n)/n^2 ) = ?

$$\mathrm{Evaluate}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\Sigma\:\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 155294    Answers: 1   Comments: 0

Question Number 155293    Answers: 2   Comments: 0

Question Number 155292    Answers: 1   Comments: 0

Question Number 155285    Answers: 0   Comments: 0

Question Number 155281    Answers: 1   Comments: 0

f :[ 0 , 6] → [−4 , 4] f (0 )=0 f (6 )=4 x, y≥0 , x+y ≤6 f (x+y )=(1/4){f(x)(√(16−(f(y))^2 )) +f(y)(√(16−(f(x))^2 )) } ∴ ( f(1) +f (3))^( 2) =?

$$ \\ $$$$\:{f}\::\left[\:\mathrm{0}\:,\:\:\mathrm{6}\right]\:\rightarrow\:\left[−\mathrm{4}\:,\:\mathrm{4}\right] \\ $$$$\:\:\:{f}\:\left(\mathrm{0}\:\right)=\mathrm{0} \\ $$$$\:\:\:\:{f}\:\left(\mathrm{6}\:\right)=\mathrm{4}\: \\ $$$$\:\:{x},\:\:{y}\geqslant\mathrm{0}\:\:,\:{x}+{y}\:\leqslant\mathrm{6} \\ $$$$\:\:\:{f}\:\left({x}+{y}\:\right)=\frac{\mathrm{1}}{\mathrm{4}}\left\{{f}\left({x}\right)\sqrt{\mathrm{16}−\left({f}\left({y}\right)\right)^{\mathrm{2}} }\:+{f}\left({y}\right)\sqrt{\mathrm{16}−\left({f}\left({x}\right)\right)^{\mathrm{2}} }\:\right\} \\ $$$$\:\:\therefore\:\:\:\left(\:{f}\left(\mathrm{1}\right)\:+{f}\:\left(\mathrm{3}\right)\right)^{\:\mathrm{2}} =? \\ $$

Question Number 155277    Answers: 2   Comments: 0

Question Number 155272    Answers: 0   Comments: 3

Question Number 155265    Answers: 1   Comments: 0

si E est la fonction partie entiere ,et n un entier naturel alors I=∫_o ^n E(x) vaut?

$${si}\:{E}\:{est}\:{la}\:{fonction}\:{partie}\:{entiere}\:,{et}\:{n}\:{un}\:{entier}\:{naturel} \\ $$$${alors}\:{I}=\int_{{o}} ^{{n}} {E}\left({x}\right)\:{vaut}? \\ $$

Question Number 155252    Answers: 1   Comments: 0

∫_0 ^( (π/2)) x.sin^( 2) (x).ln(sin(x))dx

$$ \\ $$$$\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.{sin}^{\:\mathrm{2}} \left({x}\right).{ln}\left({sin}\left({x}\right)\right){dx} \\ $$

Question Number 155244    Answers: 2   Comments: 0

Solve the equation: (sinx)^3 + sinx = cosx

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$ \\ $$$$\left(\mathrm{sin}\boldsymbol{\mathrm{x}}\right)^{\mathrm{3}} \:+\:\mathrm{sin}\boldsymbol{\mathrm{x}}\:=\:\mathrm{cos}\boldsymbol{\mathrm{x}} \\ $$

Question Number 155243    Answers: 0   Comments: 2

the value of the integral ∫_(−1) ^( 1) x^2 p_2 (x) dx is ?

$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{integral}}\:\int_{−\mathrm{1}} ^{\:\mathrm{1}} \:\boldsymbol{{x}}^{\mathrm{2}} \:\boldsymbol{{p}}_{\mathrm{2}} \left(\boldsymbol{{x}}\right)\:\boldsymbol{{dx}}\:\:\:\boldsymbol{{is}}\:?\: \\ $$

Question Number 155242    Answers: 1   Comments: 1

the value of 𝛃 (2, n ) is ?

$$\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\:\boldsymbol{\beta}\:\left(\mathrm{2},\:{n}\:\right)\:\boldsymbol{{is}}\:? \\ $$

Question Number 155238    Answers: 0   Comments: 0

Question Number 155236    Answers: 0   Comments: 0

  Pg 620      Pg 621      Pg 622      Pg 623      Pg 624      Pg 625      Pg 626      Pg 627      Pg 628      Pg 629   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com