Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 62

Question Number 218375    Answers: 1   Comments: 0

∫((√(tan x))/(sin^3 x cos x))dx

$$ \\ $$$$\:\:\int\frac{\sqrt{\boldsymbol{{tan}}\:\boldsymbol{{x}}}}{\boldsymbol{{sin}}^{\mathrm{3}} \boldsymbol{{x}}\:\boldsymbol{{cos}}\:\boldsymbol{{x}}}\boldsymbol{{dx}} \\ $$$$ \\ $$

Question Number 218374    Answers: 0   Comments: 0

∫_0 ^∞ J_α ((√(ar)))e^(−r) dr

$$\: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\infty} \boldsymbol{{J}}_{\alpha} \left(\sqrt{\boldsymbol{{ar}}}\right)\boldsymbol{{e}}^{−\boldsymbol{{r}}} \boldsymbol{{dr}}\: \\ $$$$\: \\ $$

Question Number 218366    Answers: 0   Comments: 2

Question Number 218365    Answers: 1   Comments: 0

Find: 𝛀 =lim_(n→∞) Σ_(k=1) ^n [ Σ_(i=1) ^k i (k − i + (1/3))]^(−1) = ?

$$\mathrm{Find}:\:\:\:\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\left[\:\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{k}}} {\sum}}\:\mathrm{i}\:\left(\mathrm{k}\:−\:\mathrm{i}\:+\:\frac{\mathrm{1}}{\mathrm{3}}\right)\right]^{−\mathrm{1}} =\:? \\ $$

Question Number 218364    Answers: 1   Comments: 0

Let 𝛌>0 fixed Solve for real numbers the system: { ((x^2 − yz = λ^2 )),((y^2 − zx = 7λ^2 )),((z^2 − xy = −5λ^2 )) :}

$$\mathrm{Let}\:\:\:\boldsymbol{\lambda}>\mathrm{0}\:\:\:\mathrm{fixed} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{the}\:\mathrm{system}:\:\:\:\begin{cases}{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{yz}\:=\:\lambda^{\mathrm{2}} }\\{\mathrm{y}^{\mathrm{2}} \:−\:\mathrm{zx}\:=\:\mathrm{7}\lambda^{\mathrm{2}} }\\{\mathrm{z}^{\mathrm{2}} \:−\:\mathrm{xy}\:=\:−\mathrm{5}\lambda^{\mathrm{2}} }\end{cases} \\ $$

Question Number 218358    Answers: 0   Comments: 0

Question Number 218356    Answers: 2   Comments: 0

Question Number 218357    Answers: 3   Comments: 0

Question Number 218345    Answers: 1   Comments: 0

Question Number 218344    Answers: 0   Comments: 1

Question Number 218349    Answers: 3   Comments: 0

Question Number 218354    Answers: 0   Comments: 0

Question Number 218331    Answers: 1   Comments: 0

∫_0 ^∞ ((x^2 sin (x))/(1+x^4 )) dx = ?

$$\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}} \:\mathrm{sin}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:=\:? \\ $$

Question Number 218328    Answers: 1   Comments: 0

Question Number 218310    Answers: 2   Comments: 1

10 couples are invited to a dinner and should be seated at a round table. in how many ways can the host do this, 1) generally. 2) if the husband and the wife of each couple should sit together. 3) if no two men should sit next to each other. 4) as 3), but two speicial couples should not sit next to each other. it means that the husband from couple 1 may not sit next to the wife from couple 2 and the husband from couple 2 may not sit next to the wife from couple 1. but certainly the husbands of both couples may sit next to their own wifes.

$$\mathrm{10}\:{couples}\:{are}\:{invited}\:{to}\:{a}\:{dinner} \\ $$$${and}\:{should}\:{be}\:{seated}\:{at}\:{a}\:{round}\:{table}. \\ $$$${in}\:{how}\:{many}\:{ways}\:{can}\:{the}\:{host}\:{do} \\ $$$${this}, \\ $$$$\left.\mathrm{1}\right)\:{generally}. \\ $$$$\left.\mathrm{2}\right)\:{if}\:{the}\:{husband}\:{and}\:{the}\:{wife}\:{of} \\ $$$$\:\:\:\:\:{each}\:{couple}\:{should}\:{sit}\:{together}. \\ $$$$\left.\mathrm{3}\right)\:{if}\:{no}\:{two}\:{men}\:{should}\:{sit}\:{next} \\ $$$$\:\:\:\:\:{to}\:{each}\:{other}. \\ $$$$\left.\mathrm{4}\left.\right)\:{as}\:\mathrm{3}\right),\:{but}\:{two}\:{speicial}\:{couples}\: \\ $$$$\:\:\:\:\:{should}\:{not}\:{sit}\:{next}\:{to}\:{each}\:{other}. \\ $$$$\:\:\:\:\underline{\:{it}\:{means}\:}{that}\:{the}\:{husband}\:{from}\: \\ $$$$\:\:\:\:\:{couple}\:\mathrm{1}\:{may}\:{not}\:{sit}\:{next}\:{to}\:{the} \\ $$$$\:\:\:\:\:{wife}\:{from}\:{couple}\:\mathrm{2}\:{and}\:{the} \\ $$$$\:\:\:\:\:\:{husband}\:{from}\:{couple}\:\mathrm{2}\:{may}\:{not} \\ $$$$\:\:\:\:\:\:{sit}\:{next}\:{to}\:{the}\:{wife}\:{from}\:{couple}\:\mathrm{1}. \\ $$$$\:\:\:\:\:\:{but}\:{certainly}\:{the}\:{husbands}\:{of} \\ $$$$\:\:\:\:\:\:{both}\:{couples}\:{may}\:{sit}\:{next}\:{to}\:{their} \\ $$$$\:\:\:\:\:\:{own}\:{wifes}. \\ $$

Question Number 218322    Answers: 1   Comments: 0

Evaluate ∫_0 ^(π/2) ((sin(x))/(sin^3 (x)+cos^3 (x))) dx.

$$\mathrm{Evaluate}\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\mathrm{sin}\left({x}\right)}{\mathrm{sin}^{\mathrm{3}} \left({x}\right)+\mathrm{cos}^{\mathrm{3}} \left({x}\right)}\:{dx}. \\ $$

Question Number 218318    Answers: 1   Comments: 3

Question Number 218317    Answers: 1   Comments: 0

Question Number 218280    Answers: 1   Comments: 0

Question Number 218279    Answers: 2   Comments: 0

Evaluate: (4^(log_(5/4) 4) /5^(log_(5/4) 5) ) Show workings please.

$$\mathrm{Evaluate}: \\ $$$$\:\:\:\:\:\frac{\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{4}} }{\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{5}}{\mathrm{4}}} \mathrm{5}} } \\ $$$$\mathrm{Show}\:\mathrm{workings}\:\mathrm{please}. \\ $$

Question Number 218278    Answers: 0   Comments: 0

Question Number 218312    Answers: 1   Comments: 0

Question Number 218311    Answers: 1   Comments: 0

Question Number 218267    Answers: 1   Comments: 1

Question Number 218265    Answers: 1   Comments: 0

can interpret the metric Tensor g_(μν) is kinda distance function at curved Surface ?? ex. Euclidean space g_(μν) = ((1,0,0),(0,1,0),(0,0,1) ) Sphere g_(μν) = ((( 1),( 0),( 0)),(( 0),( r^2 ),( 0)),(( 0),( 0),(r^2 sin^2 (θ))) )

$$\mathrm{can}\:\mathrm{interpret}\:\mathrm{the}\:\mathrm{metric}\:\mathrm{Tensor}\:\boldsymbol{\mathrm{g}}_{\mu\nu} \:\mathrm{is}\: \\ $$$$\mathrm{kinda}\:\mathrm{distance}\:\mathrm{function}\:\mathrm{at}\:\mathrm{curved}\:\mathrm{Surface}\:?? \\ $$$$\mathrm{ex}.\:\mathrm{Euclidean}\:\mathrm{space}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{Sphere}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\:\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$

Question Number 218262    Answers: 1   Comments: 1

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com