Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 62

Question Number 219279    Answers: 2   Comments: 0

Question Number 219278    Answers: 0   Comments: 0

Question Number 219268    Answers: 1   Comments: 0

f(x,y)=ln∫_0 ^(x^2 +y^2 ) e^t^2 dt,f(x)(1,2)=?

$${f}\left({x},{y}\right)=\mathrm{ln}\int_{\mathrm{0}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } {e}^{{t}^{\mathrm{2}} } {dt},{f}\left({x}\right)\left(\mathrm{1},\mathrm{2}\right)=? \\ $$

Question Number 219267    Answers: 1   Comments: 0

Une fonction P est dite quasi polynomiale s′il existe (pour k∈N ) k+1 fonction periodique(c_i )_(i∈[∣0;k∣]) de Z dans R telles que P(n)=Σ_(k=1) ^n c_i (n)n^i (1) Montrez que l′ensemble des fonction quasi polynomiale forme un R−ev(real space vector). (2)Montrez que si P,Q:Z→R sont desfonction quasi polynomiale tel que P(n)=Q(n) ∀n∈N alors P=Q

$${Une}\:{fonction}\:{P}\:{est}\:{dite}\:{quasi}\:{polynomiale}\:{s}'{il}\:{existe}\:\left({pour}\:{k}\in\mathbb{N}\:\right)\:{k}+\mathrm{1}\:{fonction}\:{periodique}\left({c}_{{i}} \right)_{{i}\in\left[\mid\mathrm{0};{k}\mid\right]} {de}\:\mathbb{Z}\:{dans}\:\mathbb{R} \\ $$$$\:{telles}\:{que}\:{P}\left({n}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{c}_{{i}} \left({n}\right){n}^{{i}} \\ $$$$\left(\mathrm{1}\right)\:{Montrez}\:{que}\:{l}'{ensemble}\:{des}\:{fonction}\:{quasi}\:{polynomiale}\:{forme}\:{un}\:\mathbb{R}−{ev}\left({real}\:{space}\:{vector}\right). \\ $$$$\left(\mathrm{2}\right){Montrez}\:{que}\:{si}\:{P},{Q}:\mathbb{Z}\rightarrow\mathbb{R}\:{sont}\:{desfonction}\:{quasi}\:{polynomiale}\:{tel}\:{que}\:{P}\left({n}\right)={Q}\left({n}\right)\:\forall{n}\in\mathbb{N}\:{alors}\:{P}={Q} \\ $$

Question Number 219262    Answers: 0   Comments: 0

E^ lectric field strenth at any point in the space is defined as the force per unit charge at that point. It is a vector quantity whose magnitude is given by Coulomb^(s ) law and diection is in straight line loining the at that point. mathemstically

$$\overset{} {\mathrm{E}lectric}\:\mathrm{field}\:\mathrm{strenth}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{space} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{the}\:\mathrm{force}\:\mathrm{per}\:\mathrm{unit}\:\mathrm{charge}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\:\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{quantity}\:\mathrm{whose}\:\mathrm{magnitude}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\mathrm{Coulomb}^{\mathrm{s}\:\:} \:\mathrm{law}\:\mathrm{and}\:\mathrm{diection}\:\mathrm{is}\:\mathrm{in}\: \\ $$$$\mathrm{straight}\:\mathrm{line}\:\mathrm{loining}\:\mathrm{the}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\mathrm{mathemstically} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 219255    Answers: 6   Comments: 0

Question Number 219254    Answers: 4   Comments: 0

Question Number 219243    Answers: 3   Comments: 2

Question Number 219236    Answers: 1   Comments: 0

f(t) = (1/(2πi)) ∫_( c−i∞) ^( c+i∞) (e^(st) /(s^k )) ds , k ∈C

$$ \\ $$$$\:\:\:\:{f}\left({t}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\:\int_{\:{c}−{i}\infty} ^{\:{c}+{i}\infty} \:\frac{{e}^{{st}} }{{s}^{{k}} \:}\:\:{ds}\:\:\:,\:\:{k}\:\in\mathbb{C} \\ $$$$\: \\ $$

Question Number 219234    Answers: 0   Comments: 0

f(t)=∫_(0 ) ^( t) ((ζ(1/2 + iτ))/( (√(t − τ + 1)))) dτ

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{f}\left({t}\right)=\int_{\mathrm{0}\:} ^{\:{t}} \:\frac{\zeta\left(\mathrm{1}/\mathrm{2}\:\:+\:\:{i}\tau\right)}{\:\sqrt{{t}\:−\:\tau\:\:+\:\mathrm{1}}}\:{d}\tau \\ $$$$ \\ $$

Question Number 219233    Answers: 3   Comments: 0

Question Number 219232    Answers: 4   Comments: 0

Question Number 219211    Answers: 2   Comments: 0

Question Number 219223    Answers: 2   Comments: 0

Question Number 219193    Answers: 2   Comments: 0

∫(√((x+1)/(x+2))) .(1/(x+3)) dx=?

$$\int\sqrt{\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}}\:.\frac{\mathrm{1}}{{x}+\mathrm{3}}\:{dx}=? \\ $$

Question Number 219190    Answers: 2   Comments: 1

Question Number 219185    Answers: 5   Comments: 0

Question Number 219182    Answers: 1   Comments: 1

Question Number 219181    Answers: 3   Comments: 0

Question Number 219173    Answers: 4   Comments: 0

Question Number 219120    Answers: 2   Comments: 0

Question Number 219119    Answers: 4   Comments: 0

Question Number 219118    Answers: 5   Comments: 0

Question Number 219117    Answers: 6   Comments: 0

Question Number 219116    Answers: 5   Comments: 0

Question Number 219113    Answers: 3   Comments: 1

((a + 3b)/(a + b−1)) + ((a + 3b−1)/(a + b−3)) = 4 ⇒ a + b = ?

$$\frac{\mathrm{a}\:+\:\mathrm{3b}}{\mathrm{a}\:+\:\mathrm{b}−\mathrm{1}}\:+\:\frac{\mathrm{a}\:+\:\mathrm{3b}−\mathrm{1}}{\mathrm{a}\:+\:\mathrm{b}−\mathrm{3}}\:=\:\mathrm{4}\:\:\Rightarrow\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:? \\ $$

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com