Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 62
Question Number 219066 Answers: 4 Comments: 0
Question Number 219065 Answers: 3 Comments: 0
Question Number 219060 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}^{{m}} }{{x}^{{n}} }{dx},{n}\in\mathbb{N},{m}\in\mathbb{N},{n}\leqslant{m} \\ $$
Question Number 219135 Answers: 1 Comments: 0
Question Number 219025 Answers: 3 Comments: 0
Question Number 219004 Answers: 0 Comments: 0
Question Number 219003 Answers: 1 Comments: 0
Question Number 222659 Answers: 1 Comments: 0
Question Number 218970 Answers: 4 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2},\mathrm{12},\mathrm{18},\mathrm{48},\mathrm{50},..... \\ $$$$ \\ $$
Question Number 218957 Answers: 4 Comments: 0
Question Number 218956 Answers: 2 Comments: 0
Question Number 218955 Answers: 4 Comments: 0
Question Number 218954 Answers: 2 Comments: 1
Question Number 218953 Answers: 4 Comments: 0
Question Number 218952 Answers: 4 Comments: 7
Question Number 218951 Answers: 2 Comments: 1
Question Number 218950 Answers: 7 Comments: 1
Question Number 218949 Answers: 0 Comments: 1
Question Number 218896 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{prove}}; \\ $$$$\:\mid\int\int\int_{\left[\mathrm{0},\infty\right]^{\mathrm{3}} } \boldsymbol{{f}}\frac{\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{x}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{y}}\right)\boldsymbol{{J}}_{\mathrm{0}} \left(\boldsymbol{{z}}\right)}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} }\mid\leqslant\boldsymbol{{C}}\left(\int\int\int_{\mathbb{R}_{+} ^{\mathrm{3}} } \mid\boldsymbol{{f}}\mid\left(\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{2}} \boldsymbol{{z}}^{\mathrm{2}} \right)^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 218891 Answers: 0 Comments: 0
$$ \\ $$$$\:\boldsymbol{{suppose}}\:\boldsymbol{{y}}\left(\boldsymbol{{x}}\right)\:=\:\:\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\boldsymbol{{a}}_{\boldsymbol{{n}}} \boldsymbol{{x}}^{\boldsymbol{{n}}} \boldsymbol{{statisfies}}\: \\ $$$$\:\:\:\boldsymbol{{y}}''\boldsymbol{{y}}−\left(\boldsymbol{{y}}'\right)^{\mathrm{2}} =\boldsymbol{{e}}^{\boldsymbol{{y}}} −\mathrm{1}\boldsymbol{{with}}\:\boldsymbol{{y}}\left(\mathrm{0}\right)=\mathrm{0}\:\boldsymbol{{and}}\:\boldsymbol{{y}}'\left(\mathrm{0}\right)=\mathrm{1}.\:\:\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{determin}}\:\boldsymbol{{a}}_{\mathrm{4}} . \\ $$$$ \\ $$
Question Number 218890 Answers: 5 Comments: 0
Question Number 218889 Answers: 5 Comments: 0
Question Number 218888 Answers: 1 Comments: 0
Question Number 218887 Answers: 5 Comments: 0
Question Number 218886 Answers: 4 Comments: 0
Question Number 218879 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\boldsymbol{{Calculate}}\:\boldsymbol{{the}}\:\boldsymbol{{following}}\:\boldsymbol{{integral}};\:\:\:\:\:\: \\ $$$$\:\:\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \boldsymbol{{xJ}}_{\mathrm{0}} \left(\sqrt{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{1}} \left(\sqrt{\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} }\right)\boldsymbol{{J}}_{\mathrm{2}} \left(\sqrt{\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{x}}^{\mathrm{2}} }\right)\boldsymbol{{e}}^{−\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{z}}^{\mathrm{2}} \right)} \boldsymbol{{dxdydz}}\:\:\:\:\:\:\: \\ $$$$\:\:\:\boldsymbol{{where}}\:\boldsymbol{{J}}_{\boldsymbol{{n}}} \left(\boldsymbol{{u}}\right)\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{Bassel}}\:\boldsymbol{{function}} \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{first}}\:\boldsymbol{{kind}}\:\boldsymbol{{of}}\:\boldsymbol{{order}}\:\boldsymbol{{n}} \\ $$$$ \\ $$
Pg 57 Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66
Terms of Service
Privacy Policy
Contact: info@tinkutara.com