Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 615
Question Number 154973 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{x}\:+\:\frac{\mathrm{7}}{\:\sqrt{\mathrm{x}}}\:=\:\mathrm{50} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\sqrt{\mathrm{x}}\:-\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:=\:? \\ $$
Question Number 154972 Answers: 0 Comments: 2
$${if}\:{in}\:{a}\:{triangle}\:{ABC},\:{A}\:{and}\:{B} \\ $$$${are}\:{complementry},\:{then}\:{tanC}\:{is}....? \\ $$
Question Number 154966 Answers: 0 Comments: 1
$$\:\mathrm{we}\:\mathrm{know}\:\:\mathrm{y}=\mathrm{asin}\left(\omega\mathrm{t}−\mathrm{kx}\right)\:\mathrm{is}\: \\ $$$$\mathrm{equation}\:\mathrm{of}\:\mathrm{wave} \\ $$$$\:\mathrm{which}\:\mathrm{velocity}\:\mathrm{will}\:\mathrm{be}\:\frac{\omega}{\mathrm{k}} \\ $$$$\:\:\mathrm{But}\:\mathrm{what}\:\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\: \\ $$$$\:\:\mathrm{a}\:\mathrm{wave}\:\mathrm{that}\:\mathrm{is}\:\mathrm{created}\:\mathrm{from} \\ $$$$\:\mathrm{superposition}\:\mathrm{of}\:\mathrm{two}\:\mathrm{sine}\:\mathrm{wave}\:\mathrm{of}\: \\ $$$$\mathrm{different}\:\mathrm{velocity}\:\mathrm{like}\:\mathrm{bellow} \\ $$$$\:\:\:\mathrm{y}=\mathrm{5sin}\left(\mathrm{6t}−\mathrm{x}\right)\mathrm{cos}\left(\mathrm{13t}−\mathrm{6x}\right)\:?\: \\ $$
Question Number 154959 Answers: 2 Comments: 2
$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\mathrm{P}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{10}} -\mathrm{6x}^{\mathrm{9}} -\mathrm{11x}^{\mathrm{8}} +\mathrm{3x}^{\mathrm{2}} -\mathrm{18x}-\mathrm{7} \\ $$$$\mathrm{Calculate}:\:\:\mathrm{P}\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{5}}\right) \\ $$
Question Number 154958 Answers: 0 Comments: 3
$$\:\: \\ $$$$\:\:\mathrm{if}\:,\:\mathrm{sinA}+\mathrm{sinB}=\frac{\mathrm{1}}{\mathrm{5}}\: \\ $$$$\:\mathrm{then}\:\:\:\frac{\mathrm{6cosA}+\mathrm{13cosB}}{\mathrm{cosA}+\mathrm{6cosB}}=? \\ $$$$\:\: \\ $$
Question Number 154948 Answers: 0 Comments: 3
$$\mathrm{If}\:\:\overset{\rightarrow} {\mathrm{a}}\:=\:\left(-\mathrm{1};\mathrm{0};-\mathrm{3};\mathrm{4}\right) \\ $$$$\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{b}}\:=\:\left(\mathrm{1};-\mathrm{4};\mathrm{0};-\mathrm{3}\right) \\ $$$$\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{c}}\:=\:\frac{\mid\overset{\rightarrow} {\mathrm{a}}\mid}{\mid\overset{\rightarrow} {\mathrm{b}}\mid}\:\centerdot\:\left(\mathrm{2}\overset{\rightarrow} {\mathrm{a}}\:+\:\overset{\rightarrow} {\mathrm{b}}\right) \\ $$$$\:\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{d}}\:=\:\frac{\mid\overset{\rightarrow} {\mathrm{b}}\mid}{\mid\overset{\rightarrow} {\mathrm{a}}\mid}\:\centerdot\:\left(\overset{\rightarrow} {\mathrm{a}}\:+\:\overset{\rightarrow} {\mathrm{b}}\right) \\ $$$$\:\:\:\:\:\:\:\overset{\rightarrow} {\mathrm{k}}\:=\:-\mathrm{3}\centerdot\left(\overset{\rightarrow} {\mathrm{c}}\:\centerdot\:\mid\overset{\rightarrow} {\mathrm{c}}\mid\:\centerdot\:\overset{\rightarrow} {\mathrm{d}}\right) \\ $$$$\mathrm{Find}\:\:\mid\overset{\rightarrow} {\mathrm{k}}\mid\:=\:? \\ $$
Question Number 154942 Answers: 2 Comments: 0
Question Number 154940 Answers: 1 Comments: 0
Question Number 154931 Answers: 2 Comments: 0
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{2x}^{\mathrm{5}} +\mathrm{2x}^{\mathrm{4}} −\mathrm{53x}^{\mathrm{3}} −\mathrm{57x}+\mathrm{54}\right)^{\mathrm{2011}} \\ $$$$\mathrm{f}\left(\frac{\sqrt{\mathrm{111}}−\mathrm{1}}{\mathrm{2}}\right)=? \\ $$
Question Number 154930 Answers: 0 Comments: 1
Question Number 154928 Answers: 0 Comments: 0
$$\mathrm{Prove}::\:\:\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{m}} {\sum}}\begin{pmatrix}{\mathrm{m}}\\{\mathrm{k}}\end{pmatrix}^{\mathrm{2}} \begin{pmatrix}{\mathrm{n}+\mathrm{2m}−\mathrm{k}}\\{\:\:\:\:\:\:\mathrm{2m}}\end{pmatrix}=\begin{pmatrix}{\mathrm{m}+\mathrm{n}}\\{\:\:\:\:\mathrm{n}}\end{pmatrix}^{\mathrm{2}} \\ $$
Question Number 154907 Answers: 0 Comments: 2
$$\int_{\mathrm{2}} ^{\:\mathrm{8}} \:{e}^{\mathrm{2}{x}} \:\mathrm{cos}^{\mathrm{2}} {x}\:{dx}=? \\ $$
Question Number 154902 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {E}\left({x}^{\mathrm{2}} \right){dx} \\ $$
Question Number 154896 Answers: 0 Comments: 2
$${find}\:{the}\:{following}\:?{please} \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}\right)} \\ $$
Question Number 154893 Answers: 0 Comments: 0
Question Number 154892 Answers: 1 Comments: 2
$$\mathrm{Find}: \\ $$$$\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:+\:\mathrm{cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)\:\sqrt{\mathrm{2}\:-\:\mathrm{2cos}\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)}\:=\:? \\ $$
Question Number 154889 Answers: 0 Comments: 0
Question Number 154888 Answers: 1 Comments: 0
Question Number 154926 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$
Question Number 154927 Answers: 1 Comments: 0
$$\mathrm{Let}\:{I}_{{n}} =\int{x}^{{n}} {e}^{−{x}} {dx} \\ $$$$\mathrm{show}\:\mathrm{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} {x}^{{n}} {e}^{−{x}} {dx}={n}! \\ $$
Question Number 154880 Answers: 6 Comments: 0
Question Number 154877 Answers: 2 Comments: 1
$$\int_{\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{4}}} {sin}^{\mathrm{3}} \left({x}\right){cos}^{\mathrm{2}} \left({x}\right){dx} \\ $$
Question Number 154876 Answers: 1 Comments: 0
$$\:\:\boldsymbol{\mathrm{Integrate}}: \\ $$$$\:\:\:\int_{\mathrm{1}} ^{\:\mathrm{8}} \:\:\frac{\:\sqrt{\boldsymbol{\mathrm{x}}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }{\overset{\mathrm{3}} {\:}\sqrt{\boldsymbol{\mathrm{x}}}}\:\boldsymbol{\mathrm{dx}} \\ $$
Question Number 154875 Answers: 1 Comments: 0
Question Number 154872 Answers: 1 Comments: 0
$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\int_{−\infty} ^{\:\infty} \mathrm{sin}\left({x}^{\mathrm{3}} \right)\mathrm{cos}\left({x}^{\mathrm{4}} \right){dx} \\ $$$$\: \\ $$
Question Number 154910 Answers: 1 Comments: 2
Pg 610 Pg 611 Pg 612 Pg 613 Pg 614 Pg 615 Pg 616 Pg 617 Pg 618 Pg 619
Terms of Service
Privacy Policy
Contact: info@tinkutara.com