Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 612

Question Number 157750    Answers: 1   Comments: 0

∫_0 ^∞ ((1−cos 4x)/(xe^x )) dx=?

$$\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}}{{xe}^{{x}} }\:{dx}=? \\ $$

Question Number 157793    Answers: 0   Comments: 0

Question Number 157712    Answers: 2   Comments: 2

Question Number 157706    Answers: 1   Comments: 0

Question Number 157701    Answers: 2   Comments: 0

a;b;c∈N (1/(a + (1/(b + (1/c))))) = ((16)/(37)) ⇒ a+b+c=?

$$\mathrm{a};\mathrm{b};\mathrm{c}\in\mathbb{N} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}\:+\:\frac{\mathrm{1}}{\mathrm{b}\:+\:\frac{\mathrm{1}}{\mathrm{c}}}}\:=\:\frac{\mathrm{16}}{\mathrm{37}}\:\:\:\Rightarrow\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

Question Number 157695    Answers: 4   Comments: 0

Question Number 157694    Answers: 1   Comments: 0

x^3 =x+c ; 0<c≤(2/(3(√3))) find x, without trigonometric cubic formula.

$$\:\:\:{x}^{\mathrm{3}} ={x}+{c}\:\:\:\:\:;\:\:\:\:\mathrm{0}<{c}\leqslant\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${find}\:{x},\:{without}\:{trigonometric} \\ $$$${cubic}\:{formula}. \\ $$

Question Number 157688    Answers: 0   Comments: 0

lim_(x→0) ((1/(ln (x+(√(x^2 +1))))) −(1/(ln (x+1))) )=?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)}\:−\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\mathrm{1}\right)}\:\right)=? \\ $$

Question Number 157687    Answers: 2   Comments: 1

if A ; a ; b ∈ Z^+ and 6∙40!=A∙2^a ∙3^b find (a+b)_(max) = ?

$$\mathrm{if}\:\:\:\mathrm{A}\:;\:\mathrm{a}\:;\:\mathrm{b}\:\in\:\mathbb{Z}^{+} \:\:\mathrm{and}\:\:\mathrm{6}\centerdot\mathrm{40}!=\mathrm{A}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{a}}} \centerdot\mathrm{3}^{\boldsymbol{\mathrm{b}}} \\ $$$$\mathrm{find}\:\:\:\left(\mathrm{a}+\mathrm{b}\right)_{\boldsymbol{\mathrm{max}}} \:=\:? \\ $$

Question Number 157686    Answers: 3   Comments: 0

if f(x+1)-f(x)=3 and f(25)=72 find f(2) = ?

$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)-\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{25}\right)=\mathrm{72} \\ $$$$\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{2}\right)\:=\:? \\ $$

Question Number 157665    Answers: 2   Comments: 0

Question Number 157664    Answers: 0   Comments: 3

{ ((ax+by=7)),((ax^2 +by^2 =49)),((ax^3 +by^3 =133)),((ax^4 +by^4 =406)) :} ⇒2014x+2014y−100a−100b−2014xy=?

$$\:\begin{cases}{{ax}+{by}=\mathrm{7}}\\{{ax}^{\mathrm{2}} +{by}^{\mathrm{2}} =\mathrm{49}}\\{{ax}^{\mathrm{3}} +{by}^{\mathrm{3}} =\mathrm{133}}\\{{ax}^{\mathrm{4}} +{by}^{\mathrm{4}} =\mathrm{406}}\end{cases} \\ $$$$\:\Rightarrow\mathrm{2014}{x}+\mathrm{2014}{y}−\mathrm{100}{a}−\mathrm{100}{b}−\mathrm{2014}{xy}=? \\ $$

Question Number 157663    Answers: 2   Comments: 0

Question Number 157660    Answers: 0   Comments: 0

Given x_1 = 1, x_2 , x_3 , …, is a real numbers sequence for n ≥ 1 with recurrence relation x_(n+1) − x_n = (1/(2x_n )) . [x] is expressed as the largest integer of x . [25x_(625) ] = ?

$${Given}\:\:{x}_{\mathrm{1}} \:=\:\mathrm{1},\:{x}_{\mathrm{2}} \:,\:{x}_{\mathrm{3}} \:,\:\ldots,\:{is}\:\:{a}\:\:{real}\:\:{numbers}\:\:{sequence}\:\:{for}\:\:{n}\:\geqslant\:\mathrm{1}\:\:{with}\:\: \\ $$$${recurrence}\:\:{relation}\:\:{x}_{{n}+\mathrm{1}} \:−\:{x}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}{x}_{{n}} }\:\:. \\ $$$$\left[{x}\right]\:\:{is}\:\:{expressed}\:\:{as}\:\:{the}\:\:{largest}\:\:{integer}\:\:{of}\:\:{x}\:\:. \\ $$$$\left[\mathrm{25}{x}_{\mathrm{625}} \right]\:\:=\:\:? \\ $$

Question Number 157655    Answers: 1   Comments: 1

x^2 f(x^3 )+(1/((1+x)^2 )) f(((1−x)/(1+x)))=4x^3 (1+x^4 )^5 ∫_( 0) ^( 1) f(x) dx =?

$$\:\:{x}^{\mathrm{2}} \:{f}\left({x}^{\mathrm{3}} \right)+\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{f}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)=\mathrm{4}{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} \\ $$$$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} {f}\left({x}\right)\:{dx}\:=? \\ $$

Question Number 157647    Answers: 0   Comments: 3

bonjour ,calculer la limite suivante en utilisant les developpements limites: lim_(x→0) ((1/x^2 ) − (1/(sin^2 x))).

$${bonjour}\:,{calculer}\:{la}\:{limite}\:{suivante}\:{en}\:{utilisant}\:{les}\:{developpements}\:{limites}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}}\right). \\ $$

Question Number 157645    Answers: 1   Comments: 0

what is the latest version of this app available i m having 2.265

$${what}\:{is}\:{the}\:{latest}\:{version} \\ $$$${of}\:{this}\:{app}\:{available} \\ $$$${i}\:{m}\:{having}\:\:\:\mathrm{2}.\mathrm{265} \\ $$

Question Number 157644    Answers: 2   Comments: 0

Prove (1/2)(√(2−(√3)))=(((√6)−(√2))/4)

$$\mathrm{Prove}\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$

Question Number 157637    Answers: 2   Comments: 0

3^x =2^x y+1 {x:y} εN.

$$\:\:\:\:\:\:\mathrm{3}^{{x}} =\mathrm{2}^{{x}} {y}+\mathrm{1} \\ $$$$\:\:\:\:\:\left\{\boldsymbol{{x}}:\boldsymbol{{y}}\right\}\:\varepsilon\mathbb{N}.\: \\ $$

Question Number 157635    Answers: 0   Comments: 0

Question Number 157631    Answers: 0   Comments: 0

what is higher order derivatives? discuss its importants.

$${what}\:{is}\:{higher}\:{order}\:{derivatives}? \\ $$$${discuss}\:{its}\:{importants}. \\ $$

Question Number 157630    Answers: 1   Comments: 1

Question Number 157652    Answers: 0   Comments: 4

Question Number 157628    Answers: 1   Comments: 0

find (C_0 ^(100) )^2 +(C_2 ^(100) )^2 +(C_4 ^(100) )^2 +(C_6 ^(100) )^2 +...+(C_(100) ^(100) )^2 =?

$${find} \\ $$$$\left({C}_{\mathrm{0}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{2}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{4}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{6}} ^{\mathrm{100}} \right)^{\mathrm{2}} +...+\left({C}_{\mathrm{100}} ^{\mathrm{100}} \right)^{\mathrm{2}} =? \\ $$

Question Number 157611    Answers: 1   Comments: 0

Given g(x) = (1/(1 + 3^((1/2) − x) )) g((1/(2017))) + g((2/(2017))) + g((3/(2017))) + … + g(((2016)/(2017))) = ?

$${Given}\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{2}}\:−\:{x}} } \\ $$$${g}\left(\frac{\mathrm{1}}{\mathrm{2017}}\right)\:+\:{g}\left(\frac{\mathrm{2}}{\mathrm{2017}}\right)\:+\:{g}\left(\frac{\mathrm{3}}{\mathrm{2017}}\right)\:+\:\ldots\:+\:{g}\left(\frac{\mathrm{2016}}{\mathrm{2017}}\right)\:\:=\:\:? \\ $$

Question Number 157604    Answers: 1   Comments: 3

Question find the” minimum” value of: f (x):= ∣1+x∣+∣ 2+x∣ + ∣4 +2x∣

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Q}{uestion}\: \\ $$$$\:{find}\:{the}''\:{minimum}''\:{value}\:{of}: \\ $$$$ \\ $$$${f}\:\left({x}\right):=\:\mid\mathrm{1}+{x}\mid+\mid\:\mathrm{2}+{x}\mid\:+\:\mid\mathrm{4}\:+\mathrm{2}{x}\mid \\ $$$$ \\ $$

  Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612      Pg 613      Pg 614      Pg 615      Pg 616   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com