Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 612
Question Number 157750 Answers: 1 Comments: 0
$$\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}}{{xe}^{{x}} }\:{dx}=? \\ $$
Question Number 157793 Answers: 0 Comments: 0
Question Number 157712 Answers: 2 Comments: 2
Question Number 157706 Answers: 1 Comments: 0
Question Number 157701 Answers: 2 Comments: 0
$$\mathrm{a};\mathrm{b};\mathrm{c}\in\mathbb{N} \\ $$$$\frac{\mathrm{1}}{\mathrm{a}\:+\:\frac{\mathrm{1}}{\mathrm{b}\:+\:\frac{\mathrm{1}}{\mathrm{c}}}}\:=\:\frac{\mathrm{16}}{\mathrm{37}}\:\:\:\Rightarrow\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$
Question Number 157695 Answers: 4 Comments: 0
Question Number 157694 Answers: 1 Comments: 0
$$\:\:\:{x}^{\mathrm{3}} ={x}+{c}\:\:\:\:\:;\:\:\:\:\mathrm{0}<{c}\leqslant\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${find}\:{x},\:{without}\:{trigonometric} \\ $$$${cubic}\:{formula}. \\ $$
Question Number 157688 Answers: 0 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)}\:−\frac{\mathrm{1}}{\mathrm{ln}\:\left({x}+\mathrm{1}\right)}\:\right)=? \\ $$
Question Number 157687 Answers: 2 Comments: 1
$$\mathrm{if}\:\:\:\mathrm{A}\:;\:\mathrm{a}\:;\:\mathrm{b}\:\in\:\mathbb{Z}^{+} \:\:\mathrm{and}\:\:\mathrm{6}\centerdot\mathrm{40}!=\mathrm{A}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{a}}} \centerdot\mathrm{3}^{\boldsymbol{\mathrm{b}}} \\ $$$$\mathrm{find}\:\:\:\left(\mathrm{a}+\mathrm{b}\right)_{\boldsymbol{\mathrm{max}}} \:=\:? \\ $$
Question Number 157686 Answers: 3 Comments: 0
$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)-\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{25}\right)=\mathrm{72} \\ $$$$\mathrm{find}\:\:\:\mathrm{f}\left(\mathrm{2}\right)\:=\:? \\ $$
Question Number 157665 Answers: 2 Comments: 0
Question Number 157664 Answers: 0 Comments: 3
$$\:\begin{cases}{{ax}+{by}=\mathrm{7}}\\{{ax}^{\mathrm{2}} +{by}^{\mathrm{2}} =\mathrm{49}}\\{{ax}^{\mathrm{3}} +{by}^{\mathrm{3}} =\mathrm{133}}\\{{ax}^{\mathrm{4}} +{by}^{\mathrm{4}} =\mathrm{406}}\end{cases} \\ $$$$\:\Rightarrow\mathrm{2014}{x}+\mathrm{2014}{y}−\mathrm{100}{a}−\mathrm{100}{b}−\mathrm{2014}{xy}=? \\ $$
Question Number 157663 Answers: 2 Comments: 0
Question Number 157660 Answers: 0 Comments: 0
$${Given}\:\:{x}_{\mathrm{1}} \:=\:\mathrm{1},\:{x}_{\mathrm{2}} \:,\:{x}_{\mathrm{3}} \:,\:\ldots,\:{is}\:\:{a}\:\:{real}\:\:{numbers}\:\:{sequence}\:\:{for}\:\:{n}\:\geqslant\:\mathrm{1}\:\:{with}\:\: \\ $$$${recurrence}\:\:{relation}\:\:{x}_{{n}+\mathrm{1}} \:−\:{x}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{2}{x}_{{n}} }\:\:. \\ $$$$\left[{x}\right]\:\:{is}\:\:{expressed}\:\:{as}\:\:{the}\:\:{largest}\:\:{integer}\:\:{of}\:\:{x}\:\:. \\ $$$$\left[\mathrm{25}{x}_{\mathrm{625}} \right]\:\:=\:\:? \\ $$
Question Number 157655 Answers: 1 Comments: 1
$$\:\:{x}^{\mathrm{2}} \:{f}\left({x}^{\mathrm{3}} \right)+\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }\:{f}\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)=\mathrm{4}{x}^{\mathrm{3}} \left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} \\ $$$$\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} {f}\left({x}\right)\:{dx}\:=? \\ $$
Question Number 157647 Answers: 0 Comments: 3
$${bonjour}\:,{calculer}\:{la}\:{limite}\:{suivante}\:{en}\:{utilisant}\:{les}\:{developpements}\:{limites}: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}} {x}}\right). \\ $$
Question Number 157645 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{latest}\:{version} \\ $$$${of}\:{this}\:{app}\:{available} \\ $$$${i}\:{m}\:{having}\:\:\:\mathrm{2}.\mathrm{265} \\ $$
Question Number 157644 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Question Number 157637 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\mathrm{3}^{{x}} =\mathrm{2}^{{x}} {y}+\mathrm{1} \\ $$$$\:\:\:\:\:\left\{\boldsymbol{{x}}:\boldsymbol{{y}}\right\}\:\varepsilon\mathbb{N}.\: \\ $$
Question Number 157635 Answers: 0 Comments: 0
Question Number 157631 Answers: 0 Comments: 0
$${what}\:{is}\:{higher}\:{order}\:{derivatives}? \\ $$$${discuss}\:{its}\:{importants}. \\ $$
Question Number 157630 Answers: 1 Comments: 1
Question Number 157652 Answers: 0 Comments: 4
Question Number 157628 Answers: 1 Comments: 0
$${find} \\ $$$$\left({C}_{\mathrm{0}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{2}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{4}} ^{\mathrm{100}} \right)^{\mathrm{2}} +\left({C}_{\mathrm{6}} ^{\mathrm{100}} \right)^{\mathrm{2}} +...+\left({C}_{\mathrm{100}} ^{\mathrm{100}} \right)^{\mathrm{2}} =? \\ $$
Question Number 157611 Answers: 1 Comments: 0
$${Given}\:\:{g}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{2}}\:−\:{x}} } \\ $$$${g}\left(\frac{\mathrm{1}}{\mathrm{2017}}\right)\:+\:{g}\left(\frac{\mathrm{2}}{\mathrm{2017}}\right)\:+\:{g}\left(\frac{\mathrm{3}}{\mathrm{2017}}\right)\:+\:\ldots\:+\:{g}\left(\frac{\mathrm{2016}}{\mathrm{2017}}\right)\:\:=\:\:? \\ $$
Question Number 157604 Answers: 1 Comments: 3
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Q}{uestion}\: \\ $$$$\:{find}\:{the}''\:{minimum}''\:{value}\:{of}: \\ $$$$ \\ $$$${f}\:\left({x}\right):=\:\mid\mathrm{1}+{x}\mid+\mid\:\mathrm{2}+{x}\mid\:+\:\mid\mathrm{4}\:+\mathrm{2}{x}\mid \\ $$$$ \\ $$
Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612 Pg 613 Pg 614 Pg 615 Pg 616
Terms of Service
Privacy Policy
Contact: info@tinkutara.com