Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 612
Question Number 157341 Answers: 0 Comments: 0
Question Number 157332 Answers: 2 Comments: 0
Question Number 157329 Answers: 2 Comments: 0
$$\:\boldsymbol{{whats}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\: \\ $$$$\:\:\:\:!\mathrm{5} \\ $$
Question Number 157324 Answers: 1 Comments: 1
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{cos}\:\mathrm{7}{x}\:−\:\mathrm{cos}\:\mathrm{4}{x}\:+\:\mathrm{cos}\:{x}\:=\:\mathrm{0} \\ $$
Question Number 157323 Answers: 2 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\Psi_{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{8}}\right)\:+\:\Psi_{\mathrm{2}} \left(\frac{\mathrm{5}}{\mathrm{8}}\right)\:=\:\mathrm{32G}\:+\:\mathrm{4}\pi^{\mathrm{2}} \\ $$$$\Psi-\mathrm{trigamma}\:\mathrm{function} \\ $$$$\mathrm{G}-\mathrm{catalan}\:\mathrm{constant} \\ $$
Question Number 157315 Answers: 1 Comments: 0
Question Number 157314 Answers: 0 Comments: 1
$$\:\:\:\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{5tan}\:\frac{\mathrm{4}}{{x}}\right)}{{x}\:\left(\mathrm{1}−\mathrm{cos}\:\frac{\mathrm{6}}{{x}}\right)}\:=? \\ $$
Question Number 157309 Answers: 3 Comments: 0
$$\:\:\int\:\frac{{dx}}{\:\sqrt{{x}}+{x}\sqrt{{x}+\mathrm{1}}}\:=? \\ $$
Question Number 157292 Answers: 1 Comments: 6
Question Number 157283 Answers: 1 Comments: 0
Question Number 157278 Answers: 3 Comments: 0
Question Number 157272 Answers: 2 Comments: 0
$${for}\:{solving}\:{equation}\:{which}\:{one}\:{we}\:{use} \\ $$$$\Rightarrow\:{and}\:=,\:{i}\:{mean}\:{where}\:{we}\:{use}\:\Rightarrow\:{and}\:{where}\:{we}\:{use},\:= \\ $$$${and}\:{where}\:{we}\:{use}\:{one}\:{of}\:{them}\:{to} \\ $$$${consider}\:{wrong}. \\ $$
Question Number 157268 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\int\frac{{x}^{\mathrm{2}} }{\left({x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx}=−\frac{{x}\mathrm{sec}\:{x}}{{x}\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}+\mathrm{tan}\:{x}+{c} \\ $$
Question Number 157267 Answers: 0 Comments: 3
$$\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}''−\mathrm{2}{xy}'+\mathrm{2}{y}={x}\: \\ $$
Question Number 157265 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{sin}\left(\mathrm{x}\right)\:+\:\mathrm{cos}\left(\mathrm{x}\right)\:+\:\mathrm{sec}\left(\mathrm{x}\right)\centerdot\mathrm{csc}\left(\mathrm{x}\right)=\mathrm{2}+\sqrt{\mathrm{2}} \\ $$
Question Number 157258 Answers: 0 Comments: 2
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{sin}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}\boldsymbol{\mathrm{k}}} \left(\mathrm{x}\right)}\:=\:\mathrm{8}\:\:\:;\:\:\:\mathrm{k}\in\mathbb{Z} \\ $$
Question Number 157257 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{sin}\:^{\mathrm{6}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}}{\mathrm{sin}\:^{\mathrm{2}} {x}\:\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx} \\ $$
Question Number 157251 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:#\:\mathrm{Nice}\:\mathrm{Mathematics}\:# \\ $$$$\:\:\:\:\:\:\:...{calculation}\:... \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left(\sqrt{\:{x}}\:\right)}{{x}}\:{dx}\:\overset{?} {=}\:\frac{\:\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:−−−−−−−−−−−−− \\ $$$$\:\:\:\:\Omega\::\overset{\sqrt{{x}}\:=\:{t}} {=}\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\:\:\:\:\:\::\overset{\left\{{tanh}^{\:−\mathrm{1}} \:\left({t}\:\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\:{ln}\left(\:\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\:\right)\:\right\}} {=}\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\:\mathrm{1}+{t}\:\right)−\:{ln}\left(\mathrm{1}−{t}\:\right)}{{t}}\:{dt} \\ $$$$\:\:\:\::\:\:=\:\:−\mathrm{Li}_{\:\mathrm{2}} \:\left(−\mathrm{1}\:\right)\:+\:\mathrm{Li}_{\:\mathrm{2}} \:\left(\mathrm{1}\:\right) \\ $$$$\:\:\:\:\::\overset{\:\left\{\mathrm{Li}_{\:\mathrm{2}} \:\left({z}\:\right)=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:{z}^{\:{n}} }{{n}^{\:\mathrm{2}} }\:\right\}} {=}\:\:\eta\:\left(\mathrm{2}\right)\:+\:\zeta\:\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\::=\:\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:+\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}}\:\:=\:\frac{\:\pi^{\:\mathrm{2}} }{\:\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 157247 Answers: 3 Comments: 0
$${F}\left({x},{y}\right)={x}^{\mathrm{2}} −\mathrm{2}{xy}+\mathrm{6}{y}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{2}{y}+\mathrm{45} \\ $$$${find}\:{x}\:\&{y}\:{such}\:{that}\:{F}\left({x},{y}\right)\:{minimum} \\ $$
Question Number 157241 Answers: 0 Comments: 0
Question Number 157231 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\mathcal{SOLVE}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:{x}\:\rfloor\:+\:\lfloor\mathrm{2}{x}\:\rfloor\:+\lfloor\:\mathrm{3}{x}\:\rfloor=\:\mathrm{1} \\ $$$$−−−−−−−−−− \\ $$$$ \\ $$
Question Number 157433 Answers: 0 Comments: 0
Question Number 157230 Answers: 1 Comments: 0
$$\left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{100}} \:\: \\ $$$$\mathrm{Find}\:\mathrm{this}\:\mathrm{max}\:\mathrm{Koeffitcient} \\ $$
Question Number 157438 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{all}\:\mathrm{subgroups}\:\mathrm{of}\:: \\ $$$$\left.\mathrm{a}\right)\:\mathrm{grup}\:\left(\mathrm{Z}_{\mathrm{6}} \:,\:+\right) \\ $$$$\left.\mathrm{b}\right)\:\mathrm{grup}\:\left(\mathrm{Z}_{\mathrm{6}} \:−\left\{\mathrm{0}\right\},\:×\right) \\ $$
Question Number 157436 Answers: 1 Comments: 0
$$\mathrm{if}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{then}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}} \:+\:\mathrm{2}\:\geqslant\:\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{y}}} \:+\:\mathrm{2}^{\boldsymbol{\mathrm{z}}} \\ $$$$ \\ $$
Question Number 157435 Answers: 1 Comments: 0
Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612 Pg 613 Pg 614 Pg 615 Pg 616
Terms of Service
Privacy Policy
Contact: info@tinkutara.com