Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 612
Question Number 156642 Answers: 1 Comments: 3
$$\mathrm{For}\:\:\mathrm{x}\in\left(\mathrm{0};\infty\right)\:-\:\mathbb{Z}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\frac{\left\{\mathrm{x}\right\}^{\mathrm{3}} }{\left[\mathrm{x}\right]}\:+\:\frac{\left[\mathrm{x}\right]^{\mathrm{3}} }{\left\{\mathrm{x}\right\}}\:\geqslant\:\frac{\mathrm{1}}{\mathrm{8}}\:\left(\mathrm{x}^{\mathrm{2}} \:+\:\left[\mathrm{x}\right]^{\mathrm{2}} \:+\:\left\{\mathrm{x}\right\}^{\mathrm{2}} \right) \\ $$$$\left[\ast\right]-\mathrm{GIF}\:\:\mathrm{and}\:\:\left\{\mathrm{x}\right\}=\mathrm{x}-\left[\mathrm{x}\right] \\ $$
Question Number 156640 Answers: 1 Comments: 0
Question Number 156639 Answers: 0 Comments: 0
$$\mathrm{x}^{\mathrm{3}} =\mathrm{x}+\mathrm{c} \\ $$$$\mathrm{x}^{\mathrm{4}} =\mathrm{x}^{\mathrm{2}} +\mathrm{cx} \\ $$$$\mathrm{let}\:\:\mathrm{cx}=\mathrm{kx}^{\mathrm{4}} +\mathrm{hx}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{kx}^{\mathrm{3}} +\mathrm{hx}=\mathrm{c} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{1}+\mathrm{c}\left(\mathrm{kx}^{\mathrm{2}} +\mathrm{h}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{1}+\mathrm{ch}}{\mathrm{1}−\mathrm{ck}} \\ $$$$\left(\frac{\mathrm{1}+\mathrm{ch}}{\mathrm{1}−\mathrm{ck}}\right)\left\{\frac{\mathrm{k}\left(\mathrm{1}+\mathrm{ch}\right)}{\mathrm{1}−\mathrm{ck}}+\mathrm{h}\right\}^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}+\mathrm{ch}\right)\left(\mathrm{h}+\mathrm{k}\right)^{\mathrm{2}} =\mathrm{c}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{ck}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:\:\left(\mathrm{1}+\mathrm{ch}\right)\left(\mathrm{h}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} +\mathrm{2hk}\right) \\ $$$$\:\:\:\:=\mathrm{c}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{c}^{\mathrm{3}} \mathrm{k}^{\mathrm{3}} +\mathrm{3c}^{\mathrm{2}} \mathrm{k}^{\mathrm{2}} −\mathrm{3ck}\right) \\ $$$$\mathrm{c}^{\mathrm{5}} \mathrm{k}^{\mathrm{3}} +\left(\mathrm{1}+\mathrm{ch}−\mathrm{3c}^{\mathrm{4}} \right)\mathrm{k}^{\mathrm{2}} \\ $$$$\:\:\:\:\:+\left\{\mathrm{2h}\left(\mathrm{1}+\mathrm{ch}\right)+\mathrm{3c}^{\mathrm{3}} \right\}\mathrm{k} \\ $$$$\:\:\:\:\:+\left(\mathrm{1}+\mathrm{ch}\right)\mathrm{h}^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{h}=\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\:\:\Rightarrow \\ $$$$\mathrm{c}^{\mathrm{5}} \mathrm{k}^{\mathrm{3}} +\left\{\mathrm{9c}^{\mathrm{3}} −\frac{\mathrm{2}}{\mathrm{c}}+\mathrm{2c}\left(\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\right)^{\mathrm{2}} \right\}\mathrm{k} \\ $$$$\:\:\:\:+\left\{\mathrm{3c}^{\mathrm{4}} \left(\mathrm{3c}^{\mathrm{3}} −\frac{\mathrm{1}}{\mathrm{c}}\right)^{\mathrm{2}} −\mathrm{c}^{\mathrm{2}} \right\}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{k}^{\mathrm{3}} +\mathrm{3}\left(\mathrm{6c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\right)\mathrm{k} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:+\mathrm{27c}^{\mathrm{5}} −\mathrm{18c}+\frac{\mathrm{2}}{\mathrm{c}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\mathrm{D}=\left(\frac{\mathrm{27c}^{\mathrm{5}} }{\mathrm{2}}+\mathrm{9c}+\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{3}} }\right)^{\mathrm{2}} +\left(\mathrm{6c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{c}^{\mathrm{2}} }\right)^{\mathrm{3}} \\ $$$$... \\ $$
Question Number 156617 Answers: 1 Comments: 0
Question Number 156616 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arcsin}\left({x}\right)}{{x}}{dx}=? \\ $$
Question Number 156636 Answers: 1 Comments: 0
Question Number 156611 Answers: 0 Comments: 1
$${lim}\sqrt{{x}+\mathrm{5}} \\ $$
Question Number 156610 Answers: 2 Comments: 0
$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{invertible}\:\mathrm{matrices},\mathrm{then}: \\ $$$$\left(\mathrm{AB}\right)^{−\mathrm{1}} =\mathrm{B}^{−\mathrm{1}} \mathrm{A}^{−\mathrm{1}} \neq\:\mathrm{A}^{−\mathrm{1}} \mathrm{B}^{−\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{proove}}. \\ $$
Question Number 156609 Answers: 1 Comments: 0
Question Number 156604 Answers: 1 Comments: 2
Question Number 156595 Answers: 0 Comments: 2
$$\mathrm{Mary}\:\mathrm{walks}\:\mathrm{9}\:\mathrm{city}\:\mathrm{blocks}\:\mathrm{south}, \\ $$$$\mathrm{2}\:\mathrm{blocks}\:\mathrm{east},\:\mathrm{3}\:\mathrm{blocks}\:\mathrm{south}\:\mathrm{and}\: \\ $$$$\mathrm{7}\:\mathrm{blocks}\:\mathrm{east}.\:\mathrm{if}\:\mathrm{all}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{the}\:\mathrm{same} \\ $$$$\mathrm{length}.\:\mathrm{How}\:\mathrm{far}\:\mathrm{is}\:\mathrm{she}\:\mathrm{from}\:\mathrm{her}\:\mathrm{starting} \\ $$$$\mathrm{point}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{the}\:\mathrm{aid}\:\mathrm{of}\:\mathrm{a}\:\mathrm{diagram} \\ $$
Question Number 156593 Answers: 1 Comments: 1
Question Number 156591 Answers: 0 Comments: 0
$${Find}\:{all}\:{the}\:{triplets}\:\left({a},\:{b},\:{c}\right)\:{of}\:{pozitif}\:{integers} \\ $$$${such}\:{that} \\ $$$$\boldsymbol{\mathrm{a}}^{\mathrm{3}} +\boldsymbol{\mathrm{b}}^{\mathrm{3}} +\boldsymbol{\mathrm{c}}^{\mathrm{3}} =\left(\boldsymbol{\mathrm{abc}}\right)^{\mathrm{2}} \\ $$$$ \\ $$$$ \\ $$$$?????? \\ $$
Question Number 156590 Answers: 1 Comments: 0
Question Number 156586 Answers: 0 Comments: 0
Question Number 156584 Answers: 1 Comments: 1
$$\mathrm{find}\:\mathrm{p}\:\mathrm{if}\:\mathrm{y}=\mathrm{1}−\mathrm{px}−\mathrm{3x}^{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{is}\:\mathrm{13}\:\:\left(\mathrm{help}\:\mathrm{pls}\right) \\ $$
Question Number 156579 Answers: 1 Comments: 0
$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{Cardon}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{Method}}. \\ $$$$\:\:\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}\:+\:\frac{\mathrm{2}}{\boldsymbol{\mathrm{x}}+\mathrm{1}}+\:\frac{\mathrm{3}}{\boldsymbol{\mathrm{x}}+\mathrm{2}}\:=\:\mathrm{1} \\ $$
Question Number 156578 Answers: 0 Comments: 0
Question Number 156577 Answers: 0 Comments: 4
Question Number 156575 Answers: 1 Comments: 1
$$\mathrm{let}\:\:\mathrm{n}\geqslant\mathrm{1}\:\:\mathrm{and}\:\:\lambda=\mathrm{2n}^{\mathrm{2}} -\mathrm{2n}+\mathrm{1} \\ $$$$\mathrm{solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\sqrt{\lambda\:+\:\mathrm{x}^{\mathrm{2}} }\:-\:\sqrt{\lambda\:-\:\mathrm{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}} \\ $$
Question Number 156574 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{and}\:\:\frac{\mathrm{1}}{\mathrm{a}+\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{b}+\mathrm{c}}\:+\:\frac{\mathrm{1}}{\mathrm{c}+\mathrm{a}}\:=\:\mathrm{4}\:\:\mathrm{then}: \\ $$$$\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\:+\:\frac{\mathrm{1}}{\mathrm{c}}\:+\:\frac{\mathrm{9}}{\mathrm{a}+\mathrm{b}+\mathrm{c}}\:\geqslant\:\mathrm{16} \\ $$
Question Number 156600 Answers: 2 Comments: 0
$$\int\:\frac{{e}^{{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{4}}\:{dx}\:=?\: \\ $$
Question Number 156557 Answers: 0 Comments: 1
Question Number 156548 Answers: 1 Comments: 2
Question Number 156543 Answers: 0 Comments: 0
Question Number 156536 Answers: 0 Comments: 0
Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612 Pg 613 Pg 614 Pg 615 Pg 616
Terms of Service
Privacy Policy
Contact: info@tinkutara.com