Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 612

Question Number 148398    Answers: 1   Comments: 0

Question Number 148289    Answers: 1   Comments: 1

Question Number 148285    Answers: 1   Comments: 1

∫_1 ^∞ (1/(x^2 lnx))dx=?

$$\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{{x}^{\mathrm{2}} \mathrm{ln}{x}}{dx}=? \\ $$

Question Number 148284    Answers: 1   Comments: 0

Question Number 148301    Answers: 1   Comments: 0

Solve for equation: 4sin^2 (x) + sin(2x) = 2

$${Solve}\:{for}\:{equation}: \\ $$$$\mathrm{4}{sin}^{\mathrm{2}} \left({x}\right)\:+\:{sin}\left(\mathrm{2}{x}\right)\:=\:\mathrm{2} \\ $$

Question Number 148300    Answers: 2   Comments: 0

lg^2 (10x) + lg(10x) = 6 - lg(x) x = ?

$${lg}^{\mathrm{2}} \left(\mathrm{10}{x}\right)\:+\:{lg}\left(\mathrm{10}{x}\right)\:=\:\mathrm{6}\:-\:{lg}\left({x}\right) \\ $$$${x}\:=\:? \\ $$

Question Number 148302    Answers: 2   Comments: 0

calculate ∫_(∣z∣=3) ((cos(2iz))/((z−2i)(z+i(√3))^2 ))dz

$$\mathrm{calculate}\:\:\int_{\mid\mathrm{z}\mid=\mathrm{3}} \:\:\:\frac{\mathrm{cos}\left(\mathrm{2iz}\right)}{\left(\mathrm{z}−\mathrm{2i}\right)\left(\mathrm{z}+\mathrm{i}\sqrt{\mathrm{3}}\right)^{\mathrm{2}} }\mathrm{dz} \\ $$

Question Number 148280    Answers: 0   Comments: 0

Question Number 148279    Answers: 0   Comments: 0

Question Number 148278    Answers: 0   Comments: 0

Question Number 148276    Answers: 1   Comments: 0

Question Number 148274    Answers: 0   Comments: 0

Question Number 148270    Answers: 1   Comments: 1

proof that the equation of a ellipse at a center(0.0)is (x^2 /a^2 )+(y^2 /b^2 )=1

$$\mathrm{proof}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{a}\:\mathrm{ellipse}\:\mathrm{at} \\ $$$$\mathrm{a}\:\mathrm{center}\left(\mathrm{0}.\mathrm{0}\right)\mathrm{is}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1} \\ $$

Question Number 148262    Answers: 0   Comments: 0

if x>−1 ; [q]=n≥2 ; [∗]-GIF then: (1+x)^q ≥ (1+nx)(1+(q-n)x) ≥ 1+qx

$${if}\:\:{x}>−\mathrm{1}\:\:;\:\:\left[{q}\right]={n}\geqslant\mathrm{2}\:\:;\:\:\left[\ast\right]-{GIF}\:\:{then}: \\ $$$$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\left(\mathrm{1}+{nx}\right)\left(\mathrm{1}+\left({q}-{n}\right){x}\right)\:\geqslant\:\mathrm{1}+{qx} \\ $$

Question Number 148268    Answers: 1   Comments: 0

Question Number 148257    Answers: 2   Comments: 0

Question Number 148312    Answers: 1   Comments: 0

calculer la differentielle de y=log(x) teste: sachant que log(35)=1,54407, calculer log(3501) NB: on rappelle que (1/(log(10)))=log(e)=0,43429..

$${calculer}\:{la}\:{differentielle}\:{de}\: \\ $$$${y}={log}\left({x}\right) \\ $$$${teste}:\:{sachant}\:{que}\:{log}\left(\mathrm{35}\right)=\mathrm{1},\mathrm{54407}, \\ $$$${calculer}\:{log}\left(\mathrm{3501}\right) \\ $$$${NB}:\:{on}\:{rappelle}\:{que}\:\frac{\mathrm{1}}{{log}\left(\mathrm{10}\right)}={log}\left({e}\right)=\mathrm{0},\mathrm{43429}.. \\ $$

Question Number 148250    Answers: 0   Comments: 0

Question Number 148249    Answers: 2   Comments: 1

Question Number 148242    Answers: 2   Comments: 0

Question Number 148241    Answers: 2   Comments: 0

f:x→((x^2 +x−1)/(x−1)) where x≠1 find the range of the function

$$\:{f}:{x}\rightarrow\frac{{x}^{\mathrm{2}} +{x}−\mathrm{1}}{{x}−\mathrm{1}}\:{where}\:{x}\neq\mathrm{1} \\ $$$$\:{find}\:{the}\:{range}\:{of}\:{the}\:{function} \\ $$

Question Number 148237    Answers: 1   Comments: 0

f(t)=sin(pt) fourier serie..

$${f}\left({t}\right)={sin}\left({pt}\right)\:{fourier}\:{serie}.. \\ $$

Question Number 148231    Answers: 0   Comments: 1

∫_0 ^1 x^dx =?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{dx}} =? \\ $$

Question Number 148229    Answers: 1   Comments: 1

Question Number 148226    Answers: 1   Comments: 0

Question Number 148222    Answers: 2   Comments: 0

  Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612      Pg 613      Pg 614      Pg 615      Pg 616   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com