Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 610
Question Number 157054 Answers: 0 Comments: 1
$${suppose}\:{you}\:{drop}\:{a}\:{tennis}\:{ball}\:{from}\:{a}\:{hieght}\:{of}\:\mathrm{15}\:{feet}.{after}\:{the}\:{ballhits}\:{the}\:{floor}\:{it}\:{rebounds}\:\:{to}\mathrm{85\%}\:{of}\:{its}\:{previous}\:{height}.{how}\:{high}\:{will}\:{the}\:{ball}\:{rebound}\:{after}\:{its}\:{ghird}\:{bounce}\:{round}\:{tl}\:{the}\:{nearest}\:{tenth} \\ $$$$ \\ $$
Question Number 156911 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\left(\left[\mathrm{nx}\right]\:\centerdot\:\mid\mathrm{x}\:-\:\left[\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\mid\right]\right)\mathrm{dx} \\ $$$$\left[\ast\right]\:-\:\mathrm{GIF} \\ $$
Question Number 156910 Answers: 0 Comments: 2
Question Number 156909 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\boldsymbol{\Omega}\:\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{n}\:-\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\frac{\left(\mathrm{e}\:-\:\mathrm{1}\right)\centerdot\mathrm{n}}{\mathrm{n}\:+\:\left(\mathrm{e}\:-\:\mathrm{1}\right)\centerdot\mathrm{k}}\right)\:=\:? \\ $$
Question Number 156905 Answers: 2 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y},\:{x}:\mathrm{3}:\mathrm{5}=\mathrm{8}:{y}:\mathrm{9} \\ $$
Question Number 156904 Answers: 1 Comments: 0
$${find}\:{the}\:{value}\:{of}\:{x}\:{and}\:{y}\:,\:{x}:\mathrm{3}:\mathrm{5}=\mathrm{2}:{y}:\mathrm{10} \\ $$
Question Number 156900 Answers: 0 Comments: 0
$$\Omega_{\mathrm{1}} \:=\:\mathrm{1}\:-\:\frac{\pi}{\mathrm{2}}\:+\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\left(-\:\frac{\mathrm{1}}{\boldsymbol{\pi}}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}} \\ $$$$\Omega_{\mathrm{2}} \:=\:\mathrm{1}\:-\:\frac{\pi}{\mathrm{2}}\:+\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{2}} {\overset{\infty} {\sum}}\left(-\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{e}}}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}} \\ $$$$\left.\mathrm{A}\left.\right)\left.\:\Omega_{\mathrm{1}} \:<\:\Omega_{\mathrm{2}} \:\:\:\mathrm{B}\right)\:\Omega_{\mathrm{1}} \:=\:\Omega_{\mathrm{2}} \:\:\:\mathrm{C}\right)\:\Omega_{\mathrm{1}} \:>\:\Omega_{\mathrm{2}} \\ $$
Question Number 156895 Answers: 0 Comments: 0
$$\:\frac{{dy}}{{dx}}β\frac{{x}}{{y}}+{x}^{\mathrm{3}} \:\mathrm{cos}\:{y}\:=\:\mathrm{0} \\ $$
Question Number 156915 Answers: 1 Comments: 0
Question Number 156914 Answers: 2 Comments: 0
Question Number 156891 Answers: 1 Comments: 0
Question Number 156887 Answers: 1 Comments: 0
$$\:\mathrm{tan}\:\mathrm{2}{x}\:\mathrm{tan}\:\mathrm{3}{x}\:\mathrm{tan}\:\mathrm{5}{x}\:=\mathrm{1} \\ $$
Question Number 156869 Answers: 2 Comments: 0
Question Number 156867 Answers: 1 Comments: 0
Question Number 156864 Answers: 0 Comments: 4
$$ \\ $$$$\:\:\:\:\phi\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\:\left(\mathrm{1}β{x}^{\:\mathrm{2}} \right)}{\mathrm{1}+\:{x}^{\:\mathrm{2}} }\:{dx}\:= \\ $$$$\:\:{proof}\:: \\ $$$$\:\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{ln}\left(\mathrm{1}β{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx}\:+\:\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:....\:\mathrm{I}=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\:\left(\:\mathrm{1}β{x}\:\right)}{\mathrm{1}+{x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{{x}={tan}\left({t}\right)} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\:{cos}\left({t}\right)β{sin}\left({t}\right)\right){dt}β\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({t}\right)\right){dt} \\ $$$$\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left(\sqrt{\mathrm{2}}\:\right){dt}\:+\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left(\frac{\pi}{\mathrm{4}}\:β{t}\right)\right){dt}β\frac{\mathrm{G}}{\mathrm{2}}\:+\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:{ln}\left(\mathrm{2}\right)β\frac{\mathrm{G}}{\mathrm{2}}\:β\frac{\mathrm{G}}{\mathrm{2}}\:β\frac{\pi}{\mathrm{4}}\:{ln}\left(\mathrm{2}\right)=\frac{\pi}{\mathrm{8}}{ln}\left(\mathrm{2}\right)β\mathrm{G} \\ $$$$\:\:\:\:\phi\:=\:\frac{\pi}{\mathrm{4}}{ln}\left(\mathrm{2}\right)\:β\:\mathrm{G}\:\:\:\:\:\:\blacksquare\:{m}.{n} \\ $$
Question Number 156860 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\sqrt[{{n}}]{{x}}}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}=? \\ $$
Question Number 156855 Answers: 1 Comments: 0
$$\:\:\frac{{dy}}{{dx}}\:=\:\frac{{y}^{\mathrm{3}} β{xy}^{\mathrm{2}} β{x}^{\mathrm{2}} {y}β\mathrm{5}{x}^{\mathrm{3}} }{{xy}^{\mathrm{2}} β{x}^{\mathrm{2}} {y}β\mathrm{2}{x}^{\mathrm{3}} }\: \\ $$$$\: \\ $$
Question Number 156881 Answers: 0 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\underset{\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\frac{\mathrm{log}\left(\mathrm{1}\:-\:\mathrm{x}\right)\:\mathrm{log}\left(\mathrm{1}\:-\:\mathrm{y}\right)}{\mathrm{1}\:-\:\mathrm{xy}}\:\mathrm{dxdy}\:=\:? \\ $$
Question Number 156880 Answers: 2 Comments: 0
$$\boldsymbol{\Omega}\:=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\frac{\mathrm{1}}{\boldsymbol{\pi}^{\boldsymbol{\mathrm{n}}} }\:\centerdot\:\left(\frac{\pi}{\mathrm{e}}\right)^{\boldsymbol{\mathrm{k}}} =\:? \\ $$
Question Number 156841 Answers: 1 Comments: 0
Question Number 156849 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({e}+\frac{\mathrm{1}}{\mathrm{1}β{t}}\right)}{\:\sqrt{{t}}}{dt}=? \\ $$
Question Number 156835 Answers: 0 Comments: 0
Question Number 156834 Answers: 1 Comments: 0
Question Number 156828 Answers: 0 Comments: 0
Question Number 156824 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\:\:\:\mathrm{x}\:\:\:β\:\:\:\mathrm{z}\:\:\:\:=\:\:\:\:\mathrm{tan}^{β\:\mathrm{1}} \left(\mathrm{yz}\right)\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\mathrm{z}\:\:\:=\:\:\:\mathrm{z}\left(\mathrm{x},\:\:\mathrm{y}\right),\:\:\:\:\:\:\mathrm{find}\:\:\:\:\frac{\delta\mathrm{z}}{\delta\mathrm{x}}\:,\:\:\:\frac{\delta\mathrm{z}}{\delta\mathrm{y}} \\ $$
Question Number 156820 Answers: 1 Comments: 3
$$\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} β{x}+\mathrm{1}\right)\left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right)} \\ $$
Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612 Pg 613 Pg 614
Terms of Service
Privacy Policy
Contact: info@tinkutara.com