Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 610

Question Number 148558    Answers: 2   Comments: 0

Trouver toutes les fonctions continues f:R→R verifiant: ∀(x,y)∈R^2 , f(x+y)f(x−y)=f^2 (x)f^2 (y).. monsieur j′ai suppose^ que f est un morphisme mutiplicatif de R.. mais ca ne sort pas...

$$\mathrm{Trouver}\:\mathrm{toutes}\:\mathrm{les}\:\mathrm{fonctions}\:\mathrm{continues} \\ $$$$\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{verifiant}: \\ $$$$\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} ,\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\mathrm{f}\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{f}^{\mathrm{2}} \left(\mathrm{y}\right).. \\ $$$$\mathrm{monsieur}\:\mathrm{j}'\mathrm{ai}\:\mathrm{suppos}\acute {\mathrm{e}}\:\mathrm{que}\:\mathrm{f}\:\mathrm{est}\:\mathrm{un}\: \\ $$$$\mathrm{morphisme}\:\mathrm{mutiplicatif}\:\mathrm{de}\:\mathbb{R}..\:\mathrm{mais}\:\mathrm{ca}\:\mathrm{ne} \\ $$$$\mathrm{sort}\:\mathrm{pas}... \\ $$

Question Number 148550    Answers: 1   Comments: 2

A(0;0) ; B(−2;4) and C(−6;14) if the triangle has vertices, find the lenght of the median drawn from the vertx C

$$\boldsymbol{{A}}\left(\mathrm{0};\mathrm{0}\right)\:\:;\:\:\boldsymbol{{B}}\left(−\mathrm{2};\mathrm{4}\right)\:\:{and}\:\:\boldsymbol{{C}}\left(−\mathrm{6};\mathrm{14}\right) \\ $$$${if}\:{the}\:{triangle}\:{has}\:{vertices},\:{find}\:{the} \\ $$$${lenght}\:{of}\:{the}\:{median}\:{drawn}\:{from} \\ $$$${the}\:{vertx}\:\boldsymbol{{C}} \\ $$

Question Number 148552    Answers: 0   Comments: 2

Question Number 148546    Answers: 3   Comments: 2

lim_(x→0) (((√(x + 4)) - 2)/(sinx)) = ?

$$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {{lim}}\:\frac{\sqrt{{x}\:+\:\mathrm{4}}\:-\:\mathrm{2}}{{sinx}}\:=\:? \\ $$

Question Number 148543    Answers: 4   Comments: 0

Question Number 148541    Answers: 1   Comments: 0

Question Number 148540    Answers: 1   Comments: 0

Question Number 148534    Answers: 1   Comments: 8

Question Number 148525    Answers: 2   Comments: 0

Express (((√(15))+(√(35))+(√(21))+5)/( (√3)+2(√5)+(√7))) in the form a(√(3 ))+ b(√7).

$$\:\mathrm{Express}\:\:\frac{\sqrt{\mathrm{15}}+\sqrt{\mathrm{35}}+\sqrt{\mathrm{21}}+\mathrm{5}}{\:\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{5}}+\sqrt{\mathrm{7}}}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form} \\ $$$$\:{a}\sqrt{\mathrm{3}\:}+\:{b}\sqrt{\mathrm{7}}. \\ $$

Question Number 148522    Answers: 2   Comments: 0

Question Number 148519    Answers: 0   Comments: 1

a_n =(n/(n+1)) let ε>0 be given, ∣a_m −a_n ∣=∣(m/(m+1))−(n/(n+1))∣=∣((m−n)/((m+1)(n+1)))∣=((m−n)/((m+1)(n+1))) provided m>n, ((m−n)/((m+1)(n+1)))<((m+1)/((m+1)(n+1)))=(1/(n+1))<ε. if N>((1−ε)/ε) then ∣a_m −a_n ∣<ε ∀ n,m≥N

$$ \\ $$$$\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{be}\:\mathrm{given},\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\frac{\mathrm{m}}{\mathrm{m}+\mathrm{1}}−\frac{\mathrm{n}}{\mathrm{n}+\mathrm{1}}\mid=\mid\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}\mid=\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{provided} \\ $$$$\mathrm{m}>\mathrm{n},\:\frac{\mathrm{m}−\mathrm{n}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}<\frac{\mathrm{m}+\mathrm{1}}{\left(\mathrm{m}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}=\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}<\epsilon.\:\mathrm{if}\:\mathrm{N}>\frac{\mathrm{1}−\epsilon}{\epsilon}\:\mathrm{then}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid<\epsilon\:\forall\:\mathrm{n},\mathrm{m}\geqslant\mathrm{N} \\ $$

Question Number 148515    Answers: 1   Comments: 0

Find the sum of the roots of the equation: x^2 - 2x - 3 ∣x - 1∣ + 3 = 0

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{roots}\:{of}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{2}} \:-\:\mathrm{2}{x}\:-\:\mathrm{3}\:\mid{x}\:-\:\mathrm{1}\mid\:+\:\mathrm{3}\:=\:\mathrm{0} \\ $$

Question Number 148532    Answers: 1   Comments: 0

Question Number 148513    Answers: 1   Comments: 0

6 + log_2 sin15° - log_(1/2) sin75° = ?

$$\mathrm{6}\:+\:{log}_{\mathrm{2}} \:{sin}\mathrm{15}°\:-\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} {sin}\mathrm{75}°\:=\:? \\ $$

Question Number 148505    Answers: 1   Comments: 0

Question Number 148502    Answers: 3   Comments: 0

let α and β roots of x^2 +x+2 simplify Σ_(k=0) ^(n−1) (α^k +β^k ) and Σ_(k=0) ^(n−1) ( (1/α^k )+(1/β^k ))

$$\mathrm{let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{roots}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{2} \\ $$$$\mathrm{simplify}\:\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \:\:\left(\alpha^{\mathrm{k}} \:+\beta^{\mathrm{k}} \right)\:\:\mathrm{and}\:\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}−\mathrm{1}} \left(\:\frac{\mathrm{1}}{\alpha^{\mathrm{k}} }+\frac{\mathrm{1}}{\beta^{\mathrm{k}} }\right) \\ $$

Question Number 148501    Answers: 2   Comments: 0

let U_n ={z∈C /z^n =1} simplify Σ_(p=0) ^(2n−1) w^p with w∈U_n and Σ_(p=0) ^(2n−1) (2w +1)^p

$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\left\{\mathrm{z}\in\mathrm{C}\:/\mathrm{z}^{\mathrm{n}} \:=\mathrm{1}\right\}\:\:\mathrm{simplify} \\ $$$$\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \:\mathrm{w}^{\mathrm{p}} \:\:\:\:\:\:\:\:\mathrm{with}\:\mathrm{w}\in\mathrm{U}_{\mathrm{n}} \:\:\: \\ $$$$\mathrm{and}\:\:\sum_{\mathrm{p}=\mathrm{0}} ^{\mathrm{2n}−\mathrm{1}} \left(\mathrm{2w}\:+\mathrm{1}\right)^{\mathrm{p}} \\ $$

Question Number 148494    Answers: 1   Comments: 0

(((3+2(√2))^(2008) )/((7+5(√2))^(1338) )) + (3−2(√2)) = log _2 (x) x=?

$$\:\:\:\frac{\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2008}} }{\left(\mathrm{7}+\mathrm{5}\sqrt{\mathrm{2}}\right)^{\mathrm{1338}} }\:+\:\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)\:=\:\mathrm{log}\:_{\mathrm{2}} \left(\mathrm{x}\right) \\ $$$$\:\mathrm{x}=?\: \\ $$

Question Number 148489    Answers: 1   Comments: 0

Question Number 148482    Answers: 0   Comments: 2

Question Number 148498    Answers: 1   Comments: 0

find ∫_0 ^∞ ((arctan(2x))/(1+x^2 ))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 148467    Answers: 2   Comments: 0

Question Number 148466    Answers: 2   Comments: 0

xdx+ydy=xdy−ydx

$$\mathrm{xdx}+\mathrm{ydy}=\mathrm{xdy}−\mathrm{ydx} \\ $$

Question Number 148454    Answers: 2   Comments: 0

sin^6 𝛂 + co^6 𝛂 = (3/4) ⇒ 6cos4𝛂=?

$${sin}^{\mathrm{6}} \boldsymbol{\alpha}\:+\:{co}^{\mathrm{6}} \boldsymbol{\alpha}\:=\:\frac{\mathrm{3}}{\mathrm{4}}\:\:\Rightarrow\:\:\mathrm{6}{cos}\mathrm{4}\boldsymbol{\alpha}=? \\ $$$$ \\ $$

Question Number 148453    Answers: 3   Comments: 0

(((n + 1)!)/(n!)) = 38 ⇒ n=?

$$\frac{\left({n}\:+\:\mathrm{1}\right)!}{{n}!}\:=\:\mathrm{38}\:\:\Rightarrow\:\:{n}=? \\ $$

Question Number 148452    Answers: 2   Comments: 0

∫_( 1) ^( 4) 2sin^2 x dx + ∫_( 1) ^( 4) (1+cos2x)dx = ?

$$\underset{\:\mathrm{1}} {\overset{\:\mathrm{4}} {\int}}\mathrm{2}{sin}^{\mathrm{2}} {x}\:{dx}\:+\:\underset{\:\mathrm{1}} {\overset{\:\mathrm{4}} {\int}}\left(\mathrm{1}+{cos}\mathrm{2}{x}\right){dx}\:=\:? \\ $$

  Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612      Pg 613      Pg 614   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com