Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 610

Question Number 158230    Answers: 0   Comments: 0

∫(1/(1+ln x))dx=?

$$\int\frac{\mathrm{1}}{\mathrm{1}+\mathrm{ln}\:{x}}{dx}=? \\ $$

Question Number 158237    Answers: 0   Comments: 1

Question Number 158220    Answers: 0   Comments: 0

source: myself x^5 +3cx^2 −x−5c=0

$$\:\:\:{source}:\:{myself} \\ $$$$\:{x}^{\mathrm{5}} +\mathrm{3}{cx}^{\mathrm{2}} −{x}−\mathrm{5}{c}=\mathrm{0} \\ $$

Question Number 158228    Answers: 1   Comments: 0

∫((5x^3 −3x^2 +7x−3)/((x^2 +1)^2 ))dx Solve by first finding the partial fraction

$$\int\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$${Solve}\:{by}\:{first}\:{finding}\:{the}\:{partial} \\ $$$${fraction} \\ $$

Question Number 158209    Answers: 1   Comments: 0

Question Number 158207    Answers: 1   Comments: 0

Question Number 158205    Answers: 0   Comments: 0

(1) lim_(x→0) (((e^x −1)sin x+tan^3 x)/(arctan x ln (1+4x)+4arcsin^4 x)) (2) lim_(x→0) ((1−cos x+ln (1+tan^2 2x)+2arcsin^3 x)/(1−cos 4x+sin^2 x))

$$\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left({e}^{{x}} −\mathrm{1}\right)\mathrm{sin}\:{x}+\mathrm{tan}\:^{\mathrm{3}} {x}}{\mathrm{arctan}\:{x}\:\mathrm{ln}\:\left(\mathrm{1}+\mathrm{4}{x}\right)+\mathrm{4arcsin}^{\mathrm{4}} \:{x}}\: \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:{x}+\mathrm{ln}\:\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} \mathrm{2}{x}\right)+\mathrm{2arcsin}\:^{\mathrm{3}} \:{x}}{\mathrm{1}−\mathrm{cos}\:\mathrm{4}{x}+\mathrm{sin}\:^{\mathrm{2}} {x}} \\ $$

Question Number 158204    Answers: 2   Comments: 0

lim_(x→∞) (sin (√(x+1))−sin (√(x ))) =?

$$\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{sin}\:\sqrt{{x}+\mathrm{1}}−\mathrm{sin}\:\sqrt{{x}\:}\right)\:=? \\ $$

Question Number 158203    Answers: 0   Comments: 0

lim_(n→∞) Σ_(k=1) ^n (1/n).e^((2k+1)/k) =?

$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{n}}.{e}^{\frac{\mathrm{2}{k}+\mathrm{1}}{{k}}} \:=? \\ $$

Question Number 158190    Answers: 0   Comments: 1

∫((5x^3 −3x^2 +7x−3)/((x^2 +1)^2 ))dx Solve by first giving the partial functions

$$\int\frac{\mathrm{5}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{7}{x}−\mathrm{3}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}\:{Solve}\:{by}\: \\ $$$${first}\:{giving}\:{the}\:{partial}\:{functions}\: \\ $$

Question Number 158176    Answers: 1   Comments: 0

∫{((x^2 −x−21)/(2x^3 −x^2 +8x−4))}dx

$$\int\left\{\frac{{x}^{\mathrm{2}} −{x}−\mathrm{21}}{\mathrm{2}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{4}}\right\}{dx}\: \\ $$

Question Number 158175    Answers: 1   Comments: 1

lim_(x→+∞ ) ((sinx+x)/(3+2sinx))=?

$$\underset{{x}\rightarrow+\infty\:} {{lim}}\frac{{sinx}+{x}}{\mathrm{3}+\mathrm{2}{sinx}}=? \\ $$

Question Number 158173    Answers: 0   Comments: 0

simplify the expression (1+sin 𝛗)/(5+3tan 𝛗−4cos 𝛗) using small angles approximation up to the term containing φ^2

$$\mathrm{simplify}\:\mathrm{the}\:\mathrm{expression}\:\left(\mathrm{1}+\mathrm{sin}\:\boldsymbol{\phi}\right)/\left(\mathrm{5}+\mathrm{3tan}\:\boldsymbol{\phi}−\mathrm{4cos}\:\boldsymbol{\phi}\right)\:\mathrm{using}\:\mathrm{small}\:\mathrm{angles}\:\mathrm{approximation}\:\mathrm{up}\:\mathrm{to}\:\mathrm{the}\:\mathrm{term}\:\mathrm{containing}\:\phi^{\mathrm{2}} \\ $$

Question Number 158166    Answers: 0   Comments: 1

If f((x/3))=((f(x))/2) and f(1−x)=1−f(x). find f(((173)/(1993))).

$$\:{If}\:{f}\left(\frac{{x}}{\mathrm{3}}\right)=\frac{{f}\left({x}\right)}{\mathrm{2}}\:{and}\:{f}\left(\mathrm{1}−{x}\right)=\mathrm{1}−{f}\left({x}\right). \\ $$$${find}\:{f}\left(\frac{\mathrm{173}}{\mathrm{1993}}\right). \\ $$

Question Number 158157    Answers: 0   Comments: 0

Question Number 158156    Answers: 1   Comments: 0

solve : ( x^( 2) +x −6)^( 3) + (7x^( 2) −9x −2)^( 3) −512(x^2 −x−1)^( 3) =0 x = ?

$$ \\ $$$$\:\:\:{solve}\:: \\ $$$$\left(\:{x}^{\:\mathrm{2}} +{x}\:−\mathrm{6}\right)^{\:\mathrm{3}} +\:\left(\mathrm{7}{x}^{\:\mathrm{2}} −\mathrm{9}{x}\:−\mathrm{2}\right)^{\:\mathrm{3}} −\mathrm{512}\left({x}^{\mathrm{2}} −{x}−\mathrm{1}\right)^{\:\mathrm{3}} =\mathrm{0} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:{x}\:=\:? \\ $$$$ \\ $$

Question Number 158143    Answers: 1   Comments: 6

Question Number 158142    Answers: 0   Comments: 0

f(x)=x−[x] where [x] is the greatest integer function and −3≤x≤3 a) sketch f(x) b) state the domain of f(x) c) study the continuity of f(x) on its domain d) state the range of f(x)

$${f}\left({x}\right)={x}−\left[{x}\right]\:{where}\:\left[{x}\right]\:{is}\:{the}\:{greatest} \\ $$$${integer}\:{function}\:{and}\:−\mathrm{3}\leqslant{x}\leqslant\mathrm{3} \\ $$$$\left.{a}\right)\:{sketch}\:{f}\left({x}\right) \\ $$$$\left.{b}\right)\:{state}\:{the}\:{domain}\:{of}\:{f}\left({x}\right) \\ $$$$\left.{c}\right)\:{study}\:{the}\:{continuity}\:{of}\:{f}\left({x}\right)\:{on}\:{its}\:{domain} \\ $$$$\left.{d}\right)\:{state}\:{the}\:{range}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 158187    Answers: 1   Comments: 0

Solve for real numbers: { (((√x) - y^5 = 3)),(((((√x) - 3))^(1/5) - ((y^5 + 6))^(1/5) = - 1)) :}

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}}\:-\:\mathrm{y}^{\mathrm{5}} \:=\:\mathrm{3}}\\{\sqrt[{\mathrm{5}}]{\sqrt{\mathrm{x}}\:-\:\mathrm{3}}\:-\:\sqrt[{\mathrm{5}}]{\mathrm{y}^{\mathrm{5}} \:+\:\mathrm{6}}\:=\:-\:\mathrm{1}}\end{cases}\: \\ $$$$ \\ $$

Question Number 158186    Answers: 1   Comments: 0

Question Number 158185    Answers: 0   Comments: 8

Question Number 158159    Answers: 2   Comments: 0

∫ (dx/(3−tan x)) =?

$$\:\:\:\:\:\:\int\:\frac{{dx}}{\mathrm{3}−\mathrm{tan}\:{x}}\:=? \\ $$

Question Number 158124    Answers: 1   Comments: 0

let 𝛚 be a root of the equation x^4 + (x - 1)^4 + 1 = 0 find 𝛀 = 𝛚^(300) + 𝛚^(301)

$$\mathrm{let}\:\boldsymbol{\omega}\:\mathrm{be}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{x}^{\mathrm{4}} \:+\:\left(\mathrm{x}\:-\:\mathrm{1}\right)^{\mathrm{4}} \:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\mathrm{find}\:\:\boldsymbol{\Omega}\:=\:\boldsymbol{\omega}^{\mathrm{300}} \:+\:\boldsymbol{\omega}^{\mathrm{301}} \\ $$

Question Number 158114    Answers: 2   Comments: 2

{ ((x^2 −3xy+2y^2 =35)),((x^2 +y^2 = 13)) :} ⇒x=? ∧ y=?

$$\:\begin{cases}{{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{2}{y}^{\mathrm{2}} =\mathrm{35}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\:\mathrm{13}}\end{cases} \\ $$$$\:\Rightarrow{x}=?\:\wedge\:{y}=?\: \\ $$

Question Number 158191    Answers: 1   Comments: 1

Can we reach to (m/((m−1)s)) + ((m+1)/(ms^2 )) from ((ms+m(m+1))/(s(m−s))) ??

$${Can}\:{we}\:{reach}\:{to}\:\frac{{m}}{\left({m}−\mathrm{1}\right){s}}\:+\:\frac{{m}+\mathrm{1}}{{ms}^{\mathrm{2}} }\:{from}\: \\ $$$$ \\ $$$$\:\:\:\:\frac{{ms}+{m}\left({m}+\mathrm{1}\right)}{{s}\left({m}−{s}\right)}\:?? \\ $$

Question Number 158104    Answers: 1   Comments: 0

The comparison between Rahman and Aditya's books is 2: 3. If the number of their books is 20, then the number of Aditya's books is….

$$ \\ $$The comparison between Rahman and Aditya's books is 2: 3. If the number of their books is 20, then the number of Aditya's books is….

  Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612      Pg 613      Pg 614   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com