Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 609

Question Number 148020    Answers: 0   Comments: 0

Σ_(k=2) ^∞ (−1)^k ∙((lnk)/k)=γln2−(1/2)ln^2 2

$$\underset{\mathrm{k}=\mathrm{2}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{k}} \centerdot\frac{\mathrm{lnk}}{\mathrm{k}}=\gamma\mathrm{ln2}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \mathrm{2} \\ $$

Question Number 148014    Answers: 0   Comments: 0

Question Number 148015    Answers: 0   Comments: 4

........ mathematics....... 5 (11)^( x) ≡^(13) 3^( x) ( x ∈ N ) find values of :: x = ?

$$\:\:\:\:\:\:\:\:........\:{mathematics}....... \\ $$$$\:\:\:\:\:\:\:\mathrm{5}\:\left(\mathrm{11}\right)^{\:{x}} \:\overset{\mathrm{13}} {\equiv}\:\mathrm{3}^{\:{x}} \:\:\:\:\:\left(\:{x}\:\in\:\mathbb{N}\:\right)\:\:\: \\ $$$$\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:{find}\:{values}\:{of}\:\:\:\:::\:\:\:\:{x}\:=\:? \\ $$$$ \\ $$

Question Number 148011    Answers: 0   Comments: 1

2^(((x/2))) −1=3^x

$$\mathrm{2}^{\left(\frac{\mathrm{x}}{\mathrm{2}}\right)} −\mathrm{1}=\mathrm{3}^{\mathrm{x}} \\ $$

Question Number 148000    Answers: 2   Comments: 0

∫_(−∞) ^(+∞) (dx/((x^2 +k^2 )^(3/2) ))

$$\underset{−\infty} {\overset{+\infty} {\int}}\frac{\boldsymbol{{dx}}}{\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Question Number 147999    Answers: 1   Comments: 0

Question Number 147992    Answers: 1   Comments: 1

Question Number 147988    Answers: 1   Comments: 0

La somme des n premiers termes d′une se^ rie est donne^ par S_n =5n^2 +2n le n−ieme terme de cette serie est:

$$\mathrm{La}\:\mathrm{somme}\:\mathrm{des}\:\mathrm{n}\:\mathrm{premiers}\:\mathrm{termes}\:\mathrm{d}'\mathrm{une} \\ $$$$\mathrm{s}\acute {\mathrm{e}rie}\:\mathrm{est}\:\mathrm{donn}\acute {\mathrm{e}}\:\mathrm{par}\:\mathrm{S}_{\mathrm{n}} =\mathrm{5n}^{\mathrm{2}} +\mathrm{2n}\:\mathrm{le}\: \\ $$$$\mathrm{n}−\mathrm{ieme}\:\mathrm{terme}\:\mathrm{de}\:\mathrm{cette}\:\mathrm{serie}\:\mathrm{est}: \\ $$

Question Number 147980    Answers: 1   Comments: 0

f(x) = 4x^4 - 2x^2 + 17 Find the maximum point of the function

$${f}\left({x}\right)\:=\:\mathrm{4}{x}^{\mathrm{4}} \:-\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{17} \\ $$$${Find}\:{the}\:{maximum}\:{point}\:{of}\:{the} \\ $$$${function} \\ $$

Question Number 147979    Answers: 1   Comments: 0

y = x^3 ; y = 0 and x = a Find a if the area of the figure bounded by straight lines is 64

$${y}\:=\:{x}^{\mathrm{3}} \:\:;\:\:{y}\:=\:\mathrm{0}\:\:{and}\:\:{x}\:=\:{a} \\ $$$${Find}\:\:\boldsymbol{{a}}\:\:{if}\:{the}\:{area}\:{of}\:{the}\:{figure} \\ $$$${bounded}\:{by}\:{straight}\:{lines}\:{is}\:\:\mathrm{64} \\ $$

Question Number 147978    Answers: 2   Comments: 0

3x^2 - 7 ∣x∣ + m - 5 = 0 At what value of m can the equation have three roots

$$\mathrm{3}{x}^{\mathrm{2}} \:-\:\mathrm{7}\:\mid{x}\mid\:+\:{m}\:-\:\mathrm{5}\:=\:\mathrm{0}\: \\ $$$${At}\:{what}\:{value}\:{of}\:\boldsymbol{{m}}\:{can}\:{the}\:{equation} \\ $$$${have}\:{three}\:{roots} \\ $$

Question Number 147972    Answers: 0   Comments: 0

find ∫_0 ^∞ ((arctan(2x+1))/(x^2 +4))dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{arctan}\left(\mathrm{2x}+\mathrm{1}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{4}}\mathrm{dx} \\ $$

Question Number 147971    Answers: 0   Comments: 6

find ∫_(−∞) ^(+∞) ((x^3 dx)/((x^2 +x+1)^4 ))

$$\mathrm{find}\:\int_{−\infty} ^{+\infty} \:\frac{\mathrm{x}^{\mathrm{3}} \mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{4}} } \\ $$

Question Number 147961    Answers: 0   Comments: 0

Question Number 147948    Answers: 1   Comments: 1

Question Number 147945    Answers: 1   Comments: 2

25^x +5x=e^5 (can this be solved)

$$\mathrm{25}^{{x}} +\mathrm{5}{x}={e}^{\mathrm{5}} \:\left({can}\:{this}\:{be}\:{solved}\right) \\ $$$$ \\ $$

Question Number 147944    Answers: 1   Comments: 0

if x + y + z = 13 find x, yz^(−) + y, zx^(−) + z, xy^(−) = ?

$${if}\:\:\:{x}\:+\:{y}\:+\:{z}\:=\:\mathrm{13} \\ $$$${find}\:\:\:\overline {{x},\:{yz}}\:+\:\overline {{y},\:{zx}}\:+\:\overline {{z},\:{xy}}\:=\:? \\ $$

Question Number 147943    Answers: 0   Comments: 3

∫ (((x^2 + x)^2 )/(x + 1)) = ?

$$\int\:\frac{\left({x}^{\mathrm{2}} \:+\:{x}\right)^{\mathrm{2}} }{{x}\:+\:\mathrm{1}}\:=\:? \\ $$

Question Number 147942    Answers: 2   Comments: 0

if f(x)=f(x−4)+8 and f(2)=4 find f(10)=?

$${if}\:\:\:{f}\left({x}\right)={f}\left({x}−\mathrm{4}\right)+\mathrm{8}\:\:\:{and}\:\:\:{f}\left(\mathrm{2}\right)=\mathrm{4} \\ $$$${find}\:\:\:{f}\left(\mathrm{10}\right)=? \\ $$

Question Number 147941    Answers: 2   Comments: 0

x^2 - 6x + 3 = 0 ⇒ ((2x^2 )/3) + (6/x^2 ) = ?

$${x}^{\mathrm{2}} \:-\:\mathrm{6}{x}\:+\:\mathrm{3}\:=\:\mathrm{0}\:\:\:\Rightarrow\:\:\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}\:+\:\frac{\mathrm{6}}{{x}^{\mathrm{2}} }\:=\:? \\ $$

Question Number 147936    Answers: 1   Comments: 0

Solve the inequality (π - 3)^(2sin2x) ≤ (π - 3)^2

$${Solve}\:{the}\:{inequality} \\ $$$$\left(\pi\:-\:\mathrm{3}\right)^{\mathrm{2}\boldsymbol{{sin}}\mathrm{2}\boldsymbol{{x}}} \:\leqslant\:\left(\pi\:-\:\mathrm{3}\right)^{\mathrm{2}} \\ $$

Question Number 147934    Answers: 0   Comments: 0

Question Number 147933    Answers: 1   Comments: 0

Simplify (1+ (1/(cos2x)))∙(1+(1/(cos4x)))∙(1+(1/(cos8x)))=?

$${Simplify} \\ $$$$\left(\mathrm{1}+\:\frac{\mathrm{1}}{{cos}\mathrm{2}{x}}\right)\centerdot\left(\mathrm{1}+\frac{\mathrm{1}}{{cos}\mathrm{4}{x}}\right)\centerdot\left(\mathrm{1}+\frac{\mathrm{1}}{{cos}\mathrm{8}{x}}\right)=? \\ $$

Question Number 147932    Answers: 1   Comments: 0

if ((1−sin2x)/(1 + sin2x)) = (√(17 + 12(√2))) find ∣((sinx + cosx)/(cosx - sinx))∣ = ?

$${if}\:\:\:\frac{\mathrm{1}−{sin}\mathrm{2}{x}}{\mathrm{1}\:+\:{sin}\mathrm{2}{x}}\:=\:\sqrt{\mathrm{17}\:+\:\mathrm{12}\sqrt{\mathrm{2}}} \\ $$$${find}\:\:\:\mid\frac{{sinx}\:+\:{cosx}}{{cosx}\:-\:{sinx}}\mid\:=\:? \\ $$

Question Number 147918    Answers: 0   Comments: 2

Question Number 147921    Answers: 0   Comments: 1

  Pg 604      Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612      Pg 613   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com