Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 608
Question Number 148773 Answers: 1 Comments: 0
Question Number 148768 Answers: 1 Comments: 0
Question Number 148767 Answers: 1 Comments: 0
Question Number 148819 Answers: 2 Comments: 0
Question Number 148818 Answers: 0 Comments: 0
$$\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{{xlog}\left({x}\right){log}^{\mathrm{3}} \left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{3}} }\:=\:? \\ $$
Question Number 148756 Answers: 1 Comments: 0
$$\begin{cases}{{x}^{\mathrm{2}} \:+\:{xy}\:+\:{x}\:+\:{y}\:=\:−\mathrm{2}}\\{{y}^{\mathrm{2}} \:+\:{xy}\:+\:{x}\:+\:{y}\:=\:\mathrm{1}}\end{cases}\:\:\Rightarrow\:\mathrm{3}{x}\:+\:{y}\:=\:? \\ $$
Question Number 148754 Answers: 1 Comments: 1
Question Number 148753 Answers: 1 Comments: 0
Question Number 148746 Answers: 1 Comments: 0
$${if}\:\:\:{x}\:-\:{y}\:=\:{y}\:-\:{z}\:=\:\mathrm{4} \\ $$$${find}\:\:\:{x}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \:-\:\mathrm{2}{y}^{\mathrm{2}} \:=\:? \\ $$
Question Number 148745 Answers: 0 Comments: 0
Question Number 150871 Answers: 1 Comments: 0
$$\:\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\mathrm{of}\:\mathrm{cos}\:\mathrm{x}+\mathrm{cos}\:^{\mathrm{5}} \mathrm{x}+\mathrm{cos}\:\mathrm{7x}=\mathrm{3} \\ $$
Question Number 150870 Answers: 1 Comments: 1
Question Number 148724 Answers: 1 Comments: 0
$${find}\:{laurent}\:{series}\:{f}\left({z}\right)=\frac{\mathrm{1}}{{z}^{\mathrm{2}} −{z}+\mathrm{1}}\:\:,\mathrm{0}<\mid{z}−\mathrm{1}\mid<\mathrm{1} \\ $$
Question Number 148723 Answers: 0 Comments: 1
$${tgx}+{tgy}=\mathrm{4}\:\:\:{cosx}+{cosy}=\frac{\mathrm{1}}{\mathrm{5}}\:\:\: \\ $$$${tg}\left({x}+{y}\right)=? \\ $$
Question Number 148720 Answers: 4 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{Talor}\:\mathrm{series}\:\mathrm{of}\:\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\:\mathrm{at}\:\mathrm{x}=\mathrm{0}. \\ $$
Question Number 148711 Answers: 2 Comments: 0
$${if}\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{4},\:{and}\:{x}−\frac{\mathrm{1}}{{x}}=\mathrm{3} \\ $$$${then}\:{prove}\:{that}\:\mathrm{4}=\mathrm{5} \\ $$
Question Number 148707 Answers: 1 Comments: 0
$${Solve}\:{for}\:{equation}: \\ $$$$\mathrm{2}{tg}\left(\mathrm{3}{x}\right)\:-\:\mathrm{3}{tg}\left(\mathrm{2}{x}\right)\:=\:{tg}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\:\centerdot\:{tg}\left(\mathrm{3}{x}\right) \\ $$
Question Number 148706 Answers: 1 Comments: 0
Question Number 148708 Answers: 0 Comments: 1
$${tg}^{\mathrm{6}} \left(\mathrm{36}°\right)\:+\:{tg}^{\mathrm{6}} \left(\mathrm{72}°\right)\:=\:? \\ $$
Question Number 148694 Answers: 0 Comments: 3
$$\:\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{2}^{\mathrm{x}} }{\:\sqrt[{\mathrm{5}}]{\mathrm{x}^{\mathrm{x}} +\mathrm{x}}−\sqrt[{\mathrm{5}}]{\mathrm{6}}}\:=? \\ $$
Question Number 148739 Answers: 1 Comments: 2
Question Number 148689 Answers: 2 Comments: 0
$$\:\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\in\mathrm{R} \\ $$$$\:\:\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\:=\:\sqrt{\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\mathrm{x}^{\mathrm{3}} +\mathrm{1}}}\:. \\ $$
Question Number 148733 Answers: 0 Comments: 0
$${tg}\left(\alpha\right)+{tg}\left(\beta\right)=\mathrm{4} \\ $$$${cos}\left(\alpha\right)+{cos}\left(\beta\right)=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${tg}\left(\alpha+\beta\right)=? \\ $$
Question Number 148732 Answers: 3 Comments: 0
$$\:\:\:\:\:\:{show}\:{that}\: \\ $$$$\mathrm{8}^{{n}} \:−\mathrm{3}^{{n}} \:{is}\:{divisible}\:{by}\:\mathrm{5}\:\:{for}\:{all}\:{natural} \\ $$$${number}. \\ $$
Question Number 148677 Answers: 1 Comments: 0
$$\:\:\mathrm{A}\:\mathrm{series}\:\mathrm{of}\:\mathrm{natural}\:\mathrm{numbers}\:\mathrm{are}\: \\ $$$$\:\:\mathrm{grouped}\:\mathrm{as}\:\mathrm{1}+\left(\mathrm{2}+\mathrm{3}\right)+\left(\mathrm{4}+\mathrm{5}+\mathrm{6}\right)+... \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:{rth}\:\mathrm{group}\:\mathrm{contains}\:{r}\: \\ $$$$\:\:\mathrm{terms}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the} \\ $$$$\:\:\mathrm{numbers}\:\mathrm{in}\:\mathrm{the}\:\left(\mathrm{2}{r}−\mathrm{1}\right){th}\:\mathrm{group}\:\mathrm{is} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{r}}^{\mathrm{4}} −\left(\boldsymbol{{r}}−\mathrm{1}\right)^{\mathrm{4}} . \\ $$
Question Number 148676 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{function} \\ $$$$\:\mathrm{H}\left(\mathrm{x}\right)=\frac{\mathrm{34}}{\mathrm{3}+\frac{\mathrm{2x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{1}}}\:. \\ $$
Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612
Terms of Service
Privacy Policy
Contact: info@tinkutara.com