Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 608
Question Number 157967 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{7}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\:\mathrm{divide}\:\:\mathrm{3}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:+\:\mathrm{5}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:-\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:\:\boldsymbol{\mathrm{n}} \\ $$
Question Number 157965 Answers: 1 Comments: 1
Question Number 157964 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{4tan}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{sin}\left(\mathrm{5x}\right)}{\mathrm{cos}^{\mathrm{5}} \left(\mathrm{x}\right)}\:=\:\mathrm{0} \\ $$$$ \\ $$
Question Number 157961 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} {x}^{\:\mathrm{2}} {tanh}\left({x}\right).{e}^{\:−{x}} {dx}=\frac{\pi^{\:\mathrm{3}} }{\mathrm{8}}\:−\mathrm{2}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 157957 Answers: 1 Comments: 3
Question Number 157958 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\Omega_{\boldsymbol{\mathrm{n}}} =\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\mathrm{k}^{\mathrm{3}} \:+\:\mathrm{k}^{\mathrm{2}} \:-\:\mathrm{3k}\:-\:\mathrm{2}}{\left(\mathrm{k}\:+\:\mathrm{2}\right)!}\right) \\ $$$$ \\ $$
Question Number 157952 Answers: 1 Comments: 0
$$\:{f}\left({x}\right)={x}^{\mathrm{2014}} +\mathrm{2}{x}^{\mathrm{2013}} +\mathrm{3}{x}^{\mathrm{2012}} +\mathrm{4}{x}^{\mathrm{2011}} +...+\mathrm{2014}{x}+\mathrm{2015} \\ $$$$\:{min}\:{f}\left({x}\right)=? \\ $$
Question Number 157940 Answers: 0 Comments: 3
Question Number 158039 Answers: 2 Comments: 0
$$\mathrm{f}\:\left(\frac{\mathrm{x}\:+\:\mathrm{1}}{\mathrm{2}}\right)\:=\:\mathrm{x}\:+\:\mathrm{2}\:\:\Rightarrow\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$
Question Number 157938 Answers: 0 Comments: 0
Question Number 157937 Answers: 0 Comments: 0
Question Number 157935 Answers: 0 Comments: 0
$$\:\mathrm{Evaluate}\:\boldsymbol{\mathrm{A}}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\mathrm{tan}\frac{\mathrm{k}\pi}{\mathrm{2n}}\right) \\ $$
Question Number 157932 Answers: 0 Comments: 4
$${prove}\:{that}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xy}}{{rz}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{xz}}{{ry}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{yz}}{{rx}}\right)=\frac{\pi}{\mathrm{2}} \\ $$
Question Number 157929 Answers: 0 Comments: 1
$$\int\frac{\mathrm{dx}}{\mathrm{sin}\:\mathrm{x}+\:\mathrm{sec}\:\mathrm{x}} \\ $$$$\mathrm{using}\:\mathrm{wiestress}\:\mathrm{substitution} \\ $$
Question Number 157942 Answers: 0 Comments: 1
Question Number 157913 Answers: 1 Comments: 0
$$\mathrm{5}^{\mathrm{2}} \:\centerdot\:\mathrm{5}^{\mathrm{4}} \:\centerdot\:\mathrm{5}^{\mathrm{6}} \:\centerdot\:...\:\centerdot\:\mathrm{5}^{\mathrm{2}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{0},\mathrm{04}^{-\mathrm{28}} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 157908 Answers: 1 Comments: 0
$$\left(\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:\mathrm{in}\:\mathrm{numerical}\:\mathrm{series} \\ $$$$\mathrm{7}+\mathrm{9}+\mathrm{11}+\mathrm{13}+...+\left(\mathrm{2n}+\mathrm{1}\right)=\mathrm{an}^{\mathrm{2}} +\mathrm{bn}+\mathrm{c} \\ $$$$\mathrm{find}\:\:\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}=? \\ $$
Question Number 157906 Answers: 0 Comments: 4
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{px}+\mathrm{1}\right)\left(\mathrm{2x}+\mathrm{q}+\mathrm{4}\right)\:\mathrm{function}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{single}\:\mathrm{function},\:\mathrm{find}\:\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}+\boldsymbol{\mathrm{pq}}=? \\ $$$$ \\ $$
Question Number 157926 Answers: 2 Comments: 0
$${if}\:{the}\:{line}\:{px}+{qy}={r}\:{tangents}\:{the} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1},\:{then}\: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:\boldsymbol{{a}}^{\mathrm{2}} \boldsymbol{{p}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} \boldsymbol{{q}}^{\mathrm{2}} =\boldsymbol{{r}}^{\mathrm{2}} \: \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{coordinates}\:{of}\:{the}\: \\ $$$$\:\:\:\:\:{touching}\:{point}. \\ $$
Question Number 157925 Answers: 1 Comments: 0
Question Number 157947 Answers: 1 Comments: 0
$${What}\:{are}\:{the}\:{coordinates}\:{of}\:{the} \\ $$$${points}\:{on}\:{the}\:{curve}\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =\mathrm{16} \\ $$$${which}\:{nearest}\:{to}\:\left(\mathrm{0},\mathrm{6}\right)? \\ $$
Question Number 157891 Answers: 2 Comments: 0
Question Number 157887 Answers: 1 Comments: 2
Question Number 157884 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{sin}\left(\mathrm{10}°\right)}\:-\:\mathrm{4}\:\mathrm{sin}\left(\mathrm{70}°\right)\:=\:? \\ $$
Question Number 157883 Answers: 1 Comments: 0
$$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\:+\:\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\:+\:...\:+\:\frac{\mathrm{n}-\mathrm{1}}{\mathrm{n}^{\mathrm{2}} +\mathrm{1}}\right)\:=\:? \\ $$
Question Number 157880 Answers: 0 Comments: 1
Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612
Terms of Service
Privacy Policy
Contact: info@tinkutara.com