Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 608
Question Number 157851 Answers: 1 Comments: 2
Question Number 157970 Answers: 2 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{neext}\:\mathrm{number}\:\mathrm{for}\:\mathrm{this} \\ $$$$\mathrm{sequence}\:\mathrm{below}\: \\ $$$$\left.\mathrm{1}\right).\:\mathrm{1},\:\:\mathrm{3},\:\mathrm{6},\:\mathrm{10},\:\mathrm{15}.... \\ $$$$\left.\mathrm{2}\right).\:\mathrm{1},\:\mathrm{5}\:,\mathrm{14}\:,\mathrm{30},\:\:\mathrm{55}\:.... \\ $$$$\left.\mathrm{3}\right).\:\mathrm{1},\mathrm{7},\mathrm{17},\mathrm{31},\:\mathrm{49}\:.... \\ $$$$\left.\mathrm{4}\right).\:\:\mathrm{4},\:\mathrm{13},\mathrm{28},\:\mathrm{49},\mathrm{74}... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{1},\mathrm{8},\mathrm{27},\mathrm{64},\mathrm{125}.... \\ $$$$ \\ $$
Question Number 157870 Answers: 1 Comments: 0
$${find}\:{the}\:{integral}: \\ $$$$\int\left\{\left(\mathrm{3}{x}+\mathrm{1}\right)/\left({x}^{\mathrm{2}} +\mathrm{4}\right)\right\}{dx} \\ $$
Question Number 157902 Answers: 1 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$\mathrm{x}\centerdot\left(\mathrm{x}\:+\:\mathrm{4}\right)\:=\:\mathrm{5}\centerdot\left(\mathrm{3}^{\boldsymbol{\mathrm{y}}} \:-\:\mathrm{1}\right) \\ $$$$ \\ $$
Question Number 157839 Answers: 1 Comments: 0
$${find}\:{the}\:{last}\:{four}\:{digits}\:{of}\: \\ $$$$\mathrm{11}^{\mathrm{15999}} ? \\ $$
Question Number 157835 Answers: 1 Comments: 0
Question Number 157836 Answers: 1 Comments: 0
$${find}\:{the}\:{indicated}\:{higher}\:{order}\:{derivative} \\ $$$${of}\:{the}\:{following}\:{function} \\ $$$${f}\left({x}\right)\:=\:\left({x}^{\mathrm{3}} +\mathrm{4}{x}−\mathrm{5}\right)^{\mathrm{4}} ,\:{f}\left({x}\right)^{{iv}} \\ $$
Question Number 157832 Answers: 1 Comments: 0
Question Number 157829 Answers: 1 Comments: 0
$$\frac{\sqrt{\mathrm{2}}\:{a}_{{n}} }{{a}_{{n}+\mathrm{1}} }=\sqrt{\mathrm{2}+\left({a}_{{n}} \right)^{\mathrm{2}} }\:\:\:\:\: \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\Rightarrow\:\:{a}_{\mathrm{43}} =? \\ $$
Question Number 157810 Answers: 1 Comments: 0
$$\mathrm{Calculate}:\:\:\sqrt{\sqrt{\mathrm{144}\:+\:\sqrt{\mathrm{6}}}}\:=\:? \\ $$$$ \\ $$
Question Number 157815 Answers: 0 Comments: 2
Question Number 157813 Answers: 2 Comments: 0
$${express}\:\:\mathrm{5}.\mathrm{1}\overset{\bullet} {\mathrm{3}}\overset{\bullet} {\mathrm{4}}\overset{\bullet} {\mathrm{5}}\:\:\:{into}\:{fraction} \\ $$
Question Number 157805 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{x}\in\mathbb{R}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{2x}+\mathrm{3}=\sqrt{\mathrm{2x}+\mathrm{5}}+\mathrm{4}\sqrt{\mathrm{x}−\mathrm{1}} \\ $$
Question Number 157826 Answers: 1 Comments: 0
Question Number 157824 Answers: 0 Comments: 0
Question Number 157823 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:{calculate}\:: \\ $$$$\:\:\:\:\Omega\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\:\mathrm{3}} }\:\:\:=\:? \\ $$$$\: \\ $$
Question Number 157822 Answers: 0 Comments: 1
Question Number 157803 Answers: 0 Comments: 0
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{tan}\:\left(\mathrm{tan}\:{x}\right)−\left(\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{6}} }\:=? \\ $$
Question Number 157797 Answers: 1 Comments: 0
Question Number 157791 Answers: 0 Comments: 0
Question Number 157790 Answers: 1 Comments: 0
Question Number 157788 Answers: 0 Comments: 0
$$\mathrm{look}\:\mathrm{for}\:\mathrm{a}\:\mathrm{simpler}\:\mathrm{boolean}\:\mathrm{function}\:\mathrm{in} \\ $$$$\mathrm{POS}\:\mathrm{form}\:\mathrm{of}: \\ $$$$\mathrm{a}.\mathrm{f}\left(\mathrm{r},\mathrm{s},\mathrm{t},\mathrm{u}\right)=\Pi\left(\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{9},\mathrm{10},\mathrm{12},\mathrm{14}\right) \\ $$$$\mathrm{b}.\mathrm{g}\left(\mathrm{w},\mathrm{x},\mathrm{y},\mathrm{z}\right)=\Sigma\left(\mathrm{4},\mathrm{8},\mathrm{13},\mathrm{14}\right) \\ $$
Question Number 157784 Answers: 0 Comments: 2
$${from}\:{the}\:{partical}\:{differential}\:{equation}\:{by}\:{eliminating}\:{constants}\:{indicated}\:{in}\:{brackets}\:{from}\:{the}\:{following}\:{equation}\:{z}=\left({x}+{a}\right)\:\left({y}+{b}\right);\left({a},{b}\right) \\ $$
Question Number 157781 Answers: 1 Comments: 0
Question Number 157778 Answers: 0 Comments: 0
$${find}\:{fourier}'{s}\:{serie}\:{of}\:{f}\left({x}\right)={x}−\left[{x}\right] \\ $$
Question Number 157775 Answers: 0 Comments: 5
Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612
Terms of Service
Privacy Policy
Contact: info@tinkutara.com