Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 608

Question Number 157851    Answers: 1   Comments: 2

Question Number 157970    Answers: 2   Comments: 0

Find the neext number for this sequence below 1). 1, 3, 6, 10, 15.... 2). 1, 5 ,14 ,30, 55 .... 3). 1,7,17,31, 49 .... 4). 4, 13,28, 49,74... 5). 1,8,27,64,125....

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{neext}\:\mathrm{number}\:\mathrm{for}\:\mathrm{this} \\ $$$$\mathrm{sequence}\:\mathrm{below}\: \\ $$$$\left.\mathrm{1}\right).\:\mathrm{1},\:\:\mathrm{3},\:\mathrm{6},\:\mathrm{10},\:\mathrm{15}.... \\ $$$$\left.\mathrm{2}\right).\:\mathrm{1},\:\mathrm{5}\:,\mathrm{14}\:,\mathrm{30},\:\:\mathrm{55}\:.... \\ $$$$\left.\mathrm{3}\right).\:\mathrm{1},\mathrm{7},\mathrm{17},\mathrm{31},\:\mathrm{49}\:.... \\ $$$$\left.\mathrm{4}\right).\:\:\mathrm{4},\:\mathrm{13},\mathrm{28},\:\mathrm{49},\mathrm{74}... \\ $$$$\left.\mathrm{5}\right).\:\:\mathrm{1},\mathrm{8},\mathrm{27},\mathrm{64},\mathrm{125}.... \\ $$$$ \\ $$

Question Number 157870    Answers: 1   Comments: 0

find the integral: ∫{(3x+1)/(x^2 +4)}dx

$${find}\:{the}\:{integral}: \\ $$$$\int\left\{\left(\mathrm{3}{x}+\mathrm{1}\right)/\left({x}^{\mathrm{2}} +\mathrm{4}\right)\right\}{dx} \\ $$

Question Number 157902    Answers: 1   Comments: 1

Solve for integers: x∙(x + 4) = 5∙(3^y - 1)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{integers}: \\ $$$$\mathrm{x}\centerdot\left(\mathrm{x}\:+\:\mathrm{4}\right)\:=\:\mathrm{5}\centerdot\left(\mathrm{3}^{\boldsymbol{\mathrm{y}}} \:-\:\mathrm{1}\right) \\ $$$$ \\ $$

Question Number 157839    Answers: 1   Comments: 0

find the last four digits of 11^(15999) ?

$${find}\:{the}\:{last}\:{four}\:{digits}\:{of}\: \\ $$$$\mathrm{11}^{\mathrm{15999}} ? \\ $$

Question Number 157835    Answers: 1   Comments: 0

Question Number 157836    Answers: 1   Comments: 0

find the indicated higher order derivative of the following function f(x) = (x^3 +4x−5)^4 , f(x)^(iv)

$${find}\:{the}\:{indicated}\:{higher}\:{order}\:{derivative} \\ $$$${of}\:{the}\:{following}\:{function} \\ $$$${f}\left({x}\right)\:=\:\left({x}^{\mathrm{3}} +\mathrm{4}{x}−\mathrm{5}\right)^{\mathrm{4}} ,\:{f}\left({x}\right)^{{iv}} \\ $$

Question Number 157832    Answers: 1   Comments: 0

Question Number 157829    Answers: 1   Comments: 0

(((√2) a_n )/a_(n+1) )=(√(2+(a_n )^2 )) a_1 =(1/2) ⇒ a_(43) =?

$$\frac{\sqrt{\mathrm{2}}\:{a}_{{n}} }{{a}_{{n}+\mathrm{1}} }=\sqrt{\mathrm{2}+\left({a}_{{n}} \right)^{\mathrm{2}} }\:\:\:\:\: \\ $$$${a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\Rightarrow\:\:{a}_{\mathrm{43}} =? \\ $$

Question Number 157810    Answers: 1   Comments: 0

Calculate: (√(√(144 + (√6)))) = ?

$$\mathrm{Calculate}:\:\:\sqrt{\sqrt{\mathrm{144}\:+\:\sqrt{\mathrm{6}}}}\:=\:? \\ $$$$ \\ $$

Question Number 157815    Answers: 0   Comments: 2

Question Number 157813    Answers: 2   Comments: 0

express 5.13^• 4^• 5^• into fraction

$${express}\:\:\mathrm{5}.\mathrm{1}\overset{\bullet} {\mathrm{3}}\overset{\bullet} {\mathrm{4}}\overset{\bullet} {\mathrm{5}}\:\:\:{into}\:{fraction} \\ $$

Question Number 157805    Answers: 1   Comments: 0

Find x∈R: x^3 −2x+3=(√(2x+5))+4(√(x−1))

$$\mathrm{Find}\:\mathrm{x}\in\mathbb{R}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{3}} −\mathrm{2x}+\mathrm{3}=\sqrt{\mathrm{2x}+\mathrm{5}}+\mathrm{4}\sqrt{\mathrm{x}−\mathrm{1}} \\ $$

Question Number 157826    Answers: 1   Comments: 0

Question Number 157824    Answers: 0   Comments: 0

Question Number 157823    Answers: 1   Comments: 0

calculate : Ω := Σ_(n=0) ^∞ (( 1)/((4n+1)^( 3) )) = ?

$$ \\ $$$$\:\:\:\:\:\:\:{calculate}\:: \\ $$$$\:\:\:\:\Omega\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\:\mathrm{1}}{\left(\mathrm{4}{n}+\mathrm{1}\right)^{\:\mathrm{3}} }\:\:\:=\:? \\ $$$$\: \\ $$

Question Number 157822    Answers: 0   Comments: 1

Question Number 157803    Answers: 0   Comments: 0

lim_(x→0) ((x tan (tan x)−(tan x)^2 )/x^6 ) =?

$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{x}\:\mathrm{tan}\:\left(\mathrm{tan}\:{x}\right)−\left(\mathrm{tan}\:{x}\right)^{\mathrm{2}} }{{x}^{\mathrm{6}} }\:=? \\ $$

Question Number 157797    Answers: 1   Comments: 0

Question Number 157791    Answers: 0   Comments: 0

Question Number 157790    Answers: 1   Comments: 0

Question Number 157788    Answers: 0   Comments: 0

look for a simpler boolean function in POS form of: a.f(r,s,t,u)=Π(4,5,6,9,10,12,14) b.g(w,x,y,z)=Σ(4,8,13,14)

$$\mathrm{look}\:\mathrm{for}\:\mathrm{a}\:\mathrm{simpler}\:\mathrm{boolean}\:\mathrm{function}\:\mathrm{in} \\ $$$$\mathrm{POS}\:\mathrm{form}\:\mathrm{of}: \\ $$$$\mathrm{a}.\mathrm{f}\left(\mathrm{r},\mathrm{s},\mathrm{t},\mathrm{u}\right)=\Pi\left(\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{9},\mathrm{10},\mathrm{12},\mathrm{14}\right) \\ $$$$\mathrm{b}.\mathrm{g}\left(\mathrm{w},\mathrm{x},\mathrm{y},\mathrm{z}\right)=\Sigma\left(\mathrm{4},\mathrm{8},\mathrm{13},\mathrm{14}\right) \\ $$

Question Number 157784    Answers: 0   Comments: 2

from the partical differential equation by eliminating constants indicated in brackets from the following equation z=(x+a) (y+b);(a,b)

$${from}\:{the}\:{partical}\:{differential}\:{equation}\:{by}\:{eliminating}\:{constants}\:{indicated}\:{in}\:{brackets}\:{from}\:{the}\:{following}\:{equation}\:{z}=\left({x}+{a}\right)\:\left({y}+{b}\right);\left({a},{b}\right) \\ $$

Question Number 157781    Answers: 1   Comments: 0

Question Number 157778    Answers: 0   Comments: 0

find fourier′s serie of f(x)=x−[x]

$${find}\:{fourier}'{s}\:{serie}\:{of}\:{f}\left({x}\right)={x}−\left[{x}\right] \\ $$

Question Number 157775    Answers: 0   Comments: 5

  Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com