Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 608
Question Number 158403 Answers: 0 Comments: 0
Question Number 158402 Answers: 0 Comments: 0
$$\int_{\left(\mathrm{1};\pi\right)} ^{\left(\mathrm{2};\pi\right)} \left(\mathrm{1}−\frac{{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} }{cos}\left(\frac{{y}}{{x}}\right)\right){dx}+\left({sin}\left(\frac{{y}}{{x}}\right)+\frac{{y}}{{x}}{cos}\left(\frac{{y}}{{x}}\right)\right){dy}=? \\ $$
Question Number 158417 Answers: 1 Comments: 0
$${z}^{\mathrm{3}} −\left(\mathrm{7}+\mathrm{6}{i}\right){z}^{\mathrm{2}} +\mathrm{3}\left(\mathrm{1}+\mathrm{9}{i}\right){z}+\mathrm{2}\left(\mathrm{7}−\mathrm{9}{i}\right)=\mathrm{0} \\ $$$${Resolve}\:{the}\:{equation}\:\left({E}\right)\:{sachet}\:{that}\: \\ $$$${the}\:{stop}\:{image}\:\:{one}\:{any}\:{solution}\:{behoves} \\ $$$${thru}\:{the}\:{righ}\:{t}\:{equation}\:{y}={x} \\ $$
Question Number 158420 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{lnx}}{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 158419 Answers: 0 Comments: 0
Question Number 158396 Answers: 1 Comments: 0
$${Any}\:{proof}\:{or}\:{Idea}\:{about}; \\ $$$$\frac{\mathrm{4}}{\mathrm{2}}\boldsymbol{\div}\frac{\mathrm{16}}{\mathrm{3}}\:=\:\frac{\mathrm{4}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{16}} \\ $$
Question Number 158391 Answers: 2 Comments: 1
$${if}\:\alpha,\beta,\gamma\:{are}\:{the}\:{angles}\:{of}\:{a}\:{triangle}, \\ $$$${find}\:\frac{\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\alpha}+\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\beta}+\boldsymbol{\mathrm{sin}}\:\mathrm{2}\boldsymbol{\gamma}}{\boldsymbol{\mathrm{sin}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\beta}\:\boldsymbol{\mathrm{sin}}\:\boldsymbol{\gamma}}=? \\ $$
Question Number 158383 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\frac{\mathrm{1}}{\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{4}} \left(\boldsymbol{\mathrm{x}}\right)}\:+\:\frac{\mathrm{1}}{\mathrm{10}}\:=\:\frac{\mathrm{2}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)} \\ $$$$ \\ $$
Question Number 158379 Answers: 0 Comments: 1
$${F}\left({x}+\mathrm{1}\right)−{F}\left({x}−\mathrm{1}\right)=\mathrm{6} \\ $$$${F}\left(\mathrm{0}\right)=\mathrm{4} \\ $$$${F}\left(\mathrm{3}\right)=? \\ $$
Question Number 158378 Answers: 1 Comments: 0
$${How}\:{to}\:{graph}\:{order}\:{pair}\:\left(\mathrm{3}+\mathrm{5}{i}\:,\:\mathrm{4}−\mathrm{2}{i}\right)? \\ $$
Question Number 158422 Answers: 2 Comments: 1
Question Number 158421 Answers: 2 Comments: 0
Question Number 158365 Answers: 0 Comments: 0
Question Number 158364 Answers: 0 Comments: 0
$$\mathrm{if}\:\:\mathrm{a};\mathrm{b};\mathrm{c}>\mathrm{0}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{a}^{\mathrm{2}\boldsymbol{\mathrm{a}}-\left(\boldsymbol{\mathrm{b}}+\boldsymbol{\mathrm{c}}\right)} \:\centerdot\:\mathrm{b}^{\mathrm{2}\boldsymbol{\mathrm{b}}-\left(\boldsymbol{\mathrm{c}}+\boldsymbol{\mathrm{a}}\right)} \:\centerdot\:\mathrm{c}^{\mathrm{2}\boldsymbol{\mathrm{c}}-\left(\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}\right)} \:\geqslant\:\mathrm{1} \\ $$$$ \\ $$
Question Number 158363 Answers: 1 Comments: 0
$$\mathrm{x};\mathrm{y};\mathrm{z}>\mathrm{0} \\ $$$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{3}\centerdot\left(\sqrt[{\mathrm{3}}]{\mathrm{x}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{y}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{z}}\right)\:=\:\mathrm{12}}\\{\mathrm{x}\centerdot\mathrm{y}\centerdot\mathrm{z}\:=\:\mathrm{1}}\end{cases} \\ $$$$ \\ $$
Question Number 158358 Answers: 0 Comments: 0
Question Number 158354 Answers: 0 Comments: 2
$$\:\sqrt{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}+{x}\right)}\:+\sqrt{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−{x}\right)}\:=\sqrt[{\mathrm{4}}]{\mathrm{2cos}\:\mathrm{2}{x}} \\ $$
Question Number 158341 Answers: 1 Comments: 0
Question Number 158340 Answers: 2 Comments: 0
$$\left.\mathrm{1}\right)\:{Proven}\:{that}\:{by}\:{all}\:{n}\:\in\:{N}^{\ast} \\ $$$$\:\mathrm{2}!\mathrm{4}!..\left(\mathrm{2}{n}\right)!\geqslant\left(\left({n}+\mathrm{1}\right)!\right)^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{Proven}\:{by}\:{recurring}\:{that}\: \\ $$$$\sum_{{p}=\mathrm{1}} ^{{n}} {pp}!=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$
Question Number 158334 Answers: 1 Comments: 3
$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\underset{{r}=\mathrm{1}} {\overset{{x}} {\sum}}{cos}\left(\frac{{r}\pi}{\mathrm{2}{x}}\right) \\ $$$${x}\in\mathbb{N} \\ $$
Question Number 158333 Answers: 0 Comments: 0
$$\int_{\left(\mathrm{1};\pi\right)} ^{\left(\mathrm{2};\pi\right)} \left(\mathrm{1}−\frac{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)\right)\boldsymbol{\mathrm{dx}}+\left(\boldsymbol{\mathrm{sin}}\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)+\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\boldsymbol{\mathrm{cos}}\left(\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{x}}}\right)\right)\boldsymbol{\mathrm{dy}}=? \\ $$$$\boldsymbol{\mathrm{OY}}\:\:\boldsymbol{\mathrm{on}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{road}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{doesn}}'\boldsymbol{\mathrm{t}}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{your}}\:\boldsymbol{\mathrm{arrow}} \\ $$
Question Number 158335 Answers: 2 Comments: 0
$${if}\:\alpha,\beta,\gamma\:{are}\:{the}\:{angles}\:{of}\:{a}\:{triangle}, \\ $$$${find}\: \\ $$$$\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\beta}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}}+\frac{\mathrm{1}}{\boldsymbol{\mathrm{tan}}\:\boldsymbol{\gamma}\:\boldsymbol{\mathrm{tan}}\:\boldsymbol{\alpha}}=? \\ $$
Question Number 158331 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{n}}\:\left(\mathrm{n}\:+\:\mathrm{1}\right)}\:<\:\mathrm{2} \\ $$
Question Number 158330 Answers: 0 Comments: 1
Question Number 158327 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequence}\:\:\:\:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{1}\:\:\:+\:\:\:\mathrm{x}^{\mathrm{n}} }\:\:\:\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}\:\mathrm{uniformly}\:\mathrm{on}\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$$$\mathrm{by}\:\mathrm{showing}\:\mathrm{that}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{function}\:\mathrm{is}\:\mathrm{not}\:\mathrm{continuous}\:\mathrm{on}\:\:\:\:\left[\mathrm{0},\:\:\mathrm{2}\right] \\ $$
Question Number 158325 Answers: 2 Comments: 0
Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610 Pg 611 Pg 612
Terms of Service
Privacy Policy
Contact: info@tinkutara.com