Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 608

Question Number 151586    Answers: 0   Comments: 0

∫e^(tan^(−1) x) (((1+x+x^2 )/(x^2 +1)))dx

$$\int\mathrm{e}^{\mathrm{tan}^{−\mathrm{1}} \mathrm{x}} \left(\frac{\mathrm{1}+\mathrm{x}+\mathrm{x}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\right)\mathrm{dx} \\ $$

Question Number 151585    Answers: 0   Comments: 0

∫(dx/(x(√(a^n +x^n ))))

$$\int\frac{\mathrm{dx}}{\mathrm{x}\sqrt{\mathrm{a}^{\mathrm{n}} +\mathrm{x}^{\mathrm{n}} }} \\ $$

Question Number 151630    Answers: 2   Comments: 0

Question Number 151573    Answers: 1   Comments: 0

Question Number 151568    Answers: 4   Comments: 0

∫ (√(sec(x)+tan(x))) dx how can it solve

$$\int\:\sqrt{{sec}\left({x}\right)+{tan}\left({x}\right)}\:{dx} \\ $$$$ \\ $$$${how}\:{can}\:{it}\:{solve} \\ $$

Question Number 151561    Answers: 1   Comments: 0

Given that x+iy=(a/(b+sin θ+icos θ)) show that (b^2 −1)(x^2 +y^2 )+a^2 =2abx

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{x}+\mathrm{iy}=\frac{\mathrm{a}}{\mathrm{b}+\mathrm{sin}\:\theta+\mathrm{icos}\:\theta} \\ $$$$\mathrm{show}\:\mathrm{that} \\ $$$$\left(\mathrm{b}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)+\mathrm{a}^{\mathrm{2}} =\mathrm{2abx} \\ $$

Question Number 151560    Answers: 4   Comments: 0

show that i^i is always real

$$\mathrm{show}\:\mathrm{that}\:\:\mathrm{i}^{\mathrm{i}} \:\:\mathrm{is}\:\mathrm{always}\:\mathrm{real} \\ $$

Question Number 151559    Answers: 2   Comments: 0

prove that (1+cos θ+isin θ)^n + (1+cos θ−isin θ)^n =2^(n+1) cos (θ/2)cos ((nθ)/2)

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{1}+\mathrm{cos}\:\theta+\mathrm{isin}\:\theta\right)^{\mathrm{n}} \\ $$$$+\:\left(\mathrm{1}+\mathrm{cos}\:\theta−\mathrm{isin}\:\theta\right)^{\mathrm{n}} =\mathrm{2}^{\mathrm{n}+\mathrm{1}} \mathrm{cos}\:\frac{\theta}{\mathrm{2}}\mathrm{cos}\:\frac{\mathrm{n}\theta}{\mathrm{2}} \\ $$

Question Number 151554    Answers: 1   Comments: 0

Question Number 151549    Answers: 1   Comments: 0

Compare: 2^2^2^.^.^. and 3^3^3^.^.^. Here it is raised 1001 times a square, 1000 times a cube.

$$\mathrm{Compare}: \\ $$$$\mathrm{2}^{\mathrm{2}^{\mathrm{2}^{.^{.^{.} } } } } \:\:\:\:\:\mathrm{and}\:\:\:\:\:\mathrm{3}^{\mathrm{3}^{\mathrm{3}^{.^{.^{.} } } } } \\ $$$$\mathrm{Here}\:\mathrm{it}\:\mathrm{is}\:\mathrm{raised}\:\mathrm{1001}\:\mathrm{times}\:\mathrm{a}\:\mathrm{square}, \\ $$$$\mathrm{1000}\:\mathrm{times}\:\mathrm{a}\:\mathrm{cube}. \\ $$

Question Number 151538    Answers: 3   Comments: 0

Question Number 151533    Answers: 0   Comments: 10

Compare: 2^2^2 and 3^3^3

$$\mathrm{Compare}: \\ $$$$\mathrm{2}^{\mathrm{2}^{\mathrm{2}} } \:\:\:\mathrm{and}\:\:\:\mathrm{3}^{\mathrm{3}^{\mathrm{3}} } \\ $$

Question Number 151531    Answers: 0   Comments: 1

Question Number 151519    Answers: 0   Comments: 0

∫_0 ^( ∞) ((ln(⌊x^2 ⌋!))/( (x^x +1)^x )) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\left(\lfloor{x}^{\mathrm{2}} \rfloor!\right)}{\:\left({x}^{{x}} +\mathrm{1}\right)^{{x}} }\:{dx} \\ $$$$\: \\ $$

Question Number 151518    Answers: 0   Comments: 0

Question Number 151513    Answers: 2   Comments: 0

Find two possible values of p if the lines px−y=0 and 3x+y+1=0 intersect at 45°

$$\mathrm{Find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{p}\:\mathrm{if}\:\mathrm{the}\:\mathrm{lines} \\ $$$${px}−{y}=\mathrm{0}\:\mathrm{and}\:\mathrm{3}{x}+{y}+\mathrm{1}=\mathrm{0}\:\mathrm{intersect}\:\mathrm{at}\:\mathrm{45}° \\ $$

Question Number 151504    Answers: 1   Comments: 0

∫_0 ^( ∞) ((ln x)/( (√x) (√(x+1)) (√(2x+1)))) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\mathrm{ln}\:{x}}{\:\sqrt{{x}}\:\sqrt{{x}+\mathrm{1}}\:\sqrt{\mathrm{2}{x}+\mathrm{1}}}\:{dx} \\ $$$$\: \\ $$

Question Number 151503    Answers: 1   Comments: 0

∫_0 ^( ∞) ((x−1)/( (√(2^x −1)) ln(2^x −1))) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{{x}−\mathrm{1}}{\:\sqrt{\mathrm{2}^{{x}} −\mathrm{1}}\:\mathrm{ln}\left(\mathrm{2}^{{x}} −\mathrm{1}\right)}\:{dx} \\ $$$$\: \\ $$

Question Number 151501    Answers: 1   Comments: 0

∫ (log x + 1)x^x dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\:\left(\mathrm{log}\:{x}\:+\:\mathrm{1}\right){x}^{{x}} \:{dx} \\ $$$$\: \\ $$

Question Number 151496    Answers: 1   Comments: 0

∀x,y∈R_+ ^∗ , show that (x/(x^4 +y^2 ))+(y/(y^4 +x^2 ))≤(1/(xy))

$$\forall{x},{y}\in\mathbb{R}_{+} ^{\ast} ,\:{show}\:{that}\:\frac{{x}}{{x}^{\mathrm{4}} +{y}^{\mathrm{2}} }+\frac{{y}}{{y}^{\mathrm{4}} +{x}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{{xy}} \\ $$

Question Number 151495    Answers: 0   Comments: 4

Question Number 151493    Answers: 0   Comments: 2

((cos (((5π)/2)−6x)+sin (π+4x)+sin (3π−x))/(sin (((5π)/2)+6x)+cos (4x−2π)+cos (x+2π))) =?

$$\:\:\:\frac{\mathrm{cos}\:\left(\frac{\mathrm{5}\pi}{\mathrm{2}}−\mathrm{6}{x}\right)+\mathrm{sin}\:\left(\pi+\mathrm{4}{x}\right)+\mathrm{sin}\:\left(\mathrm{3}\pi−{x}\right)}{\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{2}}+\mathrm{6}{x}\right)+\mathrm{cos}\:\left(\mathrm{4}{x}−\mathrm{2}\pi\right)+\mathrm{cos}\:\left({x}+\mathrm{2}\pi\right)}\:=? \\ $$

Question Number 151492    Answers: 0   Comments: 0

∫_0 ^( 1) ((tan(x^2 +1))/(x^2 +1)) dx

$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{tan}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}\:{dx} \\ $$$$\: \\ $$

Question Number 151490    Answers: 1   Comments: 0

{ ((a^2 =2a+b)),((b^2 =a+2b)) :} and a≠b find (√(a^2 +b^2 +1))

$$\begin{cases}{\mathrm{a}^{\mathrm{2}} =\mathrm{2a}+\mathrm{b}}\\{\mathrm{b}^{\mathrm{2}} =\mathrm{a}+\mathrm{2b}}\end{cases}\:\:\mathrm{and}\:\:\mathrm{a}\neq\mathrm{b}\:\:\mathrm{find}\:\:\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{1}} \\ $$

Question Number 151486    Answers: 1   Comments: 0

∫ln(sinx)=? x ≠ 0 + 2kπ ; k ∈ Z

$$\int{ln}\left({sinx}\right)=?\: \\ $$$${x}\:\neq\:\mathrm{0}\:+\:\mathrm{2}{k}\pi\:;\:{k}\:\in\:\mathbb{Z} \\ $$

Question Number 151485    Answers: 1   Comments: 0

  Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611      Pg 612   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com