Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 607

Question Number 158700    Answers: 0   Comments: 0

Question Number 158699    Answers: 0   Comments: 3

(√((log_3 3(√(3x))+log_x 3(√(3x)))log_3 x^3 ))+(√((((log_3 3(√x))/3)+((log_x 3(√x))/3))log_3 x^3 ))=2 please i need help. Ive been trying but still not getting answer.

$$\sqrt{\left(\mathrm{log}_{\mathrm{3}} \mathrm{3}\sqrt{\mathrm{3x}}+\mathrm{log}_{\mathrm{x}} \mathrm{3}\sqrt{\mathrm{3x}}\right)\mathrm{log}_{\mathrm{3}} \mathrm{x}^{\mathrm{3}} }+\sqrt{\left(\frac{\mathrm{log}_{\mathrm{3}} \mathrm{3}\sqrt{\mathrm{x}}}{\mathrm{3}}+\frac{\mathrm{log}_{\mathrm{x}} \mathrm{3}\sqrt{\mathrm{x}}}{\mathrm{3}}\right)\mathrm{log}_{\mathrm{3}} \mathrm{x}^{\mathrm{3}} }=\mathrm{2} \\ $$$$\mathrm{please}\:\mathrm{i}\:\mathrm{need}\:\mathrm{help}. \\ $$$$\mathrm{Ive}\:\mathrm{been}\:\mathrm{trying}\:\mathrm{but}\:\mathrm{still}\:\mathrm{not}\:\mathrm{getting}\: \\ $$$$\mathrm{answer}. \\ $$

Question Number 158698    Answers: 0   Comments: 0

(x+1)^2 (x^2 −4c^2 )=4c^4

$$\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{4}{c}^{\mathrm{2}} \right)=\mathrm{4}{c}^{\mathrm{4}} \\ $$

Question Number 158697    Answers: 1   Comments: 0

∫_0 ^1 ln(ln(1−x))dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left({ln}\left(\mathrm{1}−{x}\right)\right){dx}=? \\ $$

Question Number 158696    Answers: 0   Comments: 0

find the partial differention equation if u = (g o f ) (x+y) help me sir

$${find}\:{the}\:{partial}\:{differention}\:{equation}\:{if}\: \\ $$$${u}\:=\:\left({g}\:{o}\:{f}\:\right)\:\left({x}+{y}\right) \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$

Question Number 158691    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (( (−1)^( n) H_( 2n) )/(2n)) =?

$$ \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\left(−\mathrm{1}\right)^{\:{n}} \:\mathcal{H}_{\:\mathrm{2}{n}} }{\mathrm{2}{n}}\:=? \\ $$

Question Number 158687    Answers: 1   Comments: 0

∀x∈R f(x)=f ′ (x) and f(0)=1 prove f(a+b)=f(a)×f(b)

$$\forall{x}\in{R}\:\:{f}\left({x}\right)={f}\:'\:\left({x}\right)\:\:\:\:\:\:{and}\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${prove}\:\:{f}\left({a}+{b}\right)={f}\left({a}\right)×{f}\left({b}\right) \\ $$

Question Number 158675    Answers: 2   Comments: 1

Question Number 158674    Answers: 0   Comments: 2

Question Number 158671    Answers: 0   Comments: 3

∀x∈R ; f(x)=f ′(x) prove f(x+y)=f(x)f(y)

$$\forall{x}\in{R}\:;\:{f}\left({x}\right)={f}\:'\left({x}\right) \\ $$$${prove}\:{f}\left({x}+{y}\right)={f}\left({x}\right){f}\left({y}\right) \\ $$

Question Number 158668    Answers: 1   Comments: 0

f(f(x))= (9x^2 +6x+2)f(x) f(x)=?

$$\:{f}\left({f}\left({x}\right)\right)=\:\left(\mathrm{9}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{2}\right){f}\left({x}\right) \\ $$$$\:{f}\left({x}\right)=? \\ $$

Question Number 158664    Answers: 2   Comments: 3

Question Number 158644    Answers: 1   Comments: 2

Solve for real numbers: 2^x + 2^(1 + (1/( (√x)))) = 6

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}^{\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{\mathrm{x}}}}} \:=\:\mathrm{6} \\ $$$$ \\ $$

Question Number 158638    Answers: 0   Comments: 0

Provd that 2017^n can be written as the sum of seven perfect squares.

$$\mathrm{Provd}\:\mathrm{that}\:\:\mathrm{2017}^{\boldsymbol{\mathrm{n}}} \:\:\mathrm{can}\:\mathrm{be}\:\mathrm{written} \\ $$$$\mathrm{as}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{seven}\:\mathrm{perfect}\:\mathrm{squares}. \\ $$$$ \\ $$

Question Number 158636    Answers: 0   Comments: 3

Question Number 158711    Answers: 2   Comments: 2

Question Number 158630    Answers: 0   Comments: 0

Question Number 158685    Answers: 0   Comments: 1

Question Number 158622    Answers: 1   Comments: 1

Question Number 158781    Answers: 2   Comments: 0

Question Number 158780    Answers: 2   Comments: 0

Question Number 158619    Answers: 2   Comments: 1

Question Number 158598    Answers: 2   Comments: 2

Question Number 158694    Answers: 1   Comments: 0

Help me sir in phase sppace d^3 p=dp_x dp_(y ) dp_z then find ∫_0 ^∞ P^(2 ) e^(p^2 /(2mKT )) d^3 p =....

$${Help}\:{me}\:{sir} \\ $$$$\: \\ $$$${in}\:{phase}\:{sppace}\:\:{d}^{\mathrm{3}} {p}={dp}_{{x}} {dp}_{{y}\:} {dp}_{{z}} \:\:{then} \\ $$$${find} \\ $$$$\:\int_{\mathrm{0}} ^{\infty} \:{P}^{\mathrm{2}\:} {e}^{\frac{{p}^{\mathrm{2}} }{\mathrm{2}{mKT}\:}} \:\:{d}^{\mathrm{3}} {p}\:\:=.... \\ $$$$ \\ $$$$ \\ $$

Question Number 158693    Answers: 1   Comments: 0

Question Number 158596    Answers: 1   Comments: 0

calculate : Ω = ∫_0 ^( (π/4)) (( 1+ tan^( 4) (x))/(cot^( 2) (x))) dx=?

$$ \\ $$$$\:\:\:\:\:{calculate}\:: \\ $$$$\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\:\mathrm{1}+\:{tan}^{\:\mathrm{4}} \left({x}\right)}{{cot}^{\:\mathrm{2}} \left({x}\right)}\:{dx}=? \\ $$$$ \\ $$

  Pg 602      Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610      Pg 611   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com