Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 606

Question Number 156082    Answers: 0   Comments: 0

0< α <(π/2) (( sin(α)))^(1/( 3)) + ((cos(α))^(1/3) )= (( tan(α)))^(1/3) (( tan (α ) + cot (α ))/2) =?

$$ \\ $$$$\:\:\:\:\:\mathrm{0}<\:\alpha\:<\frac{\pi}{\mathrm{2}}\:\:\: \\ $$$$\left.\:\:\sqrt[{\:\mathrm{3}}]{\:{sin}\left(\alpha\right)}\:+\:\sqrt[{\mathrm{3}}]{{cos}\left(\alpha\right.}\right)=\:\sqrt[{\mathrm{3}}]{\:{tan}\left(\alpha\right)} \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\frac{\:{tan}\:\left(\alpha\:\right)\:+\:{cot}\:\left(\alpha\:\right)}{\mathrm{2}}\:=? \\ $$

Question Number 156080    Answers: 0   Comments: 1

∫e^(−2x) cos(e^(−x) )dx

$$\int{e}^{−\mathrm{2}{x}} {cos}\left({e}^{−{x}} \right){dx} \\ $$

Question Number 156072    Answers: 0   Comments: 5

Question Number 156065    Answers: 0   Comments: 0

find the minimum of expression M=cos((A−B)/2)sin(A/2)sin(B/2)

$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{expression}\:\mathrm{M}=\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}}{\mathrm{2}}\mathrm{sin}\frac{\boldsymbol{\mathrm{A}}}{\mathrm{2}}\mathrm{sin}\frac{\boldsymbol{\mathrm{B}}}{\mathrm{2}} \\ $$

Question Number 156063    Answers: 3   Comments: 2

(2/x)+(3/(x+1))+(4/(x+2))+(5/(x+3))+(6/(x+4))=5

$$\:\:\:\:\frac{\mathrm{2}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}+\mathrm{1}}+\frac{\mathrm{4}}{\mathrm{x}+\mathrm{2}}+\frac{\mathrm{5}}{\mathrm{x}+\mathrm{3}}+\frac{\mathrm{6}}{\mathrm{x}+\mathrm{4}}=\mathrm{5} \\ $$

Question Number 156077    Answers: 1   Comments: 0

Question Number 156061    Answers: 2   Comments: 0

Question Number 156059    Answers: 1   Comments: 1

Question Number 156058    Answers: 1   Comments: 0

cos(π/8)=...? with solution plz

$$\:\:{cos}\frac{\pi}{\mathrm{8}}=...?\:\:{with}\:{solution}\:{plz} \\ $$

Question Number 156052    Answers: 0   Comments: 0

Question Number 156049    Answers: 0   Comments: 0

Question Number 156047    Answers: 0   Comments: 4

Question Number 156028    Answers: 1   Comments: 0

Ω := ∫_0 ^( (π/2)) (√(sin(x))) ln(sin( x ))dx=? m.n..

$$ \\ $$$$\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{{sin}\left({x}\right)}\:\mathrm{ln}\left({sin}\left(\:{x}\:\right)\right){dx}=? \\ $$$$\:\:{m}.{n}.. \\ $$$$ \\ $$

Question Number 156024    Answers: 1   Comments: 0

Question Number 156021    Answers: 0   Comments: 0

Question Number 156009    Answers: 0   Comments: 5

Please calculate 1). ∫sin^5 x dx 2). ∫cos^2 x dx 3). ∫tan^3 x.sec^5 x dx 4). ∫cos 5x.cos 3x dx 5). ∫ ((tan^2 x−1)/(sec^2 x)) dx

$$\mathrm{Please}\:\mathrm{calculate} \\ $$$$\left.\mathrm{1}\right).\:\int\mathrm{sin}\:^{\mathrm{5}} \mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right).\:\int\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{3}\right).\:\int\mathrm{tan}\:^{\mathrm{3}} \mathrm{x}.\mathrm{sec}\:^{\mathrm{5}} \mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{4}\right).\:\int\mathrm{cos}\:\mathrm{5x}.\mathrm{cos}\:\mathrm{3x}\:\mathrm{dx} \\ $$$$\left.\mathrm{5}\right).\:\int\:\:\frac{\mathrm{tan}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}}{\mathrm{sec}\:^{\mathrm{2}} \:\mathrm{x}}\:\:\mathrm{dx} \\ $$

Question Number 156008    Answers: 0   Comments: 8

Tekhnic Integration by part 1) Find ∫x.sec^2 x dx 2) Find ∫x.e^(2x) dx 3) Find ∫ln x dx 4) Find ∫x^2 .e^(2x) dx 5) Find ∫e^x cos x dx

$$\mathrm{Tekhnic}\:\:\mathrm{Integration}\:\mathrm{by}\:\mathrm{part} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Find}\:\int\mathrm{x}.\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Find}\:\int\mathrm{x}.\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{Find}\:\int\mathrm{ln}\:\:\mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{4}\right)\:\:\mathrm{Find}\:\int\mathrm{x}^{\mathrm{2}} .\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{5}\right)\:\:\mathrm{Find}\:\int\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$$$\: \\ $$$$ \\ $$

Question Number 156005    Answers: 2   Comments: 2

∫_0 ^( (π/2)) (x/(sin(x))) dx

$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sin}\left({x}\right)}\:{dx} \\ $$

Question Number 156055    Answers: 1   Comments: 0

Question Number 155996    Answers: 1   Comments: 0

Question Number 155992    Answers: 0   Comments: 0

(1+log _3 x).(√(log _(3x) ((x/3))^(1/3) )) ≤ 2

$$\:\left(\mathrm{1}+\mathrm{log}\:_{\mathrm{3}} \:\mathrm{x}\right).\sqrt{\mathrm{log}\:_{\mathrm{3x}} \:\sqrt[{\mathrm{3}}]{\frac{\mathrm{x}}{\mathrm{3}}}}\:\leqslant\:\mathrm{2} \\ $$

Question Number 155991    Answers: 2   Comments: 1

{ ((a(x+2)+y=3a)),((a+2x^3 =y^3 +(a+2)x^3 )) :} solve for x &y in term a

$$\:\begin{cases}{\mathrm{a}\left(\mathrm{x}+\mathrm{2}\right)+\mathrm{y}=\mathrm{3a}}\\{\mathrm{a}+\mathrm{2x}^{\mathrm{3}} =\mathrm{y}^{\mathrm{3}} +\left(\mathrm{a}+\mathrm{2}\right)\mathrm{x}^{\mathrm{3}} }\end{cases} \\ $$$$\:\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\&\mathrm{y}\:\mathrm{in}\:\mathrm{term}\:\mathrm{a} \\ $$

Question Number 155989    Answers: 0   Comments: 1

5sin^2 2x + 8cos^3 x = 8cos x ((3π)/2)≤x≤2π

$$\:\:\:\:\mathrm{5sin}\:^{\mathrm{2}} \mathrm{2x}\:+\:\mathrm{8cos}\:^{\mathrm{3}} \mathrm{x}\:=\:\mathrm{8cos}\:\mathrm{x} \\ $$$$\:\:\:\:\frac{\mathrm{3}\pi}{\mathrm{2}}\leqslant\mathrm{x}\leqslant\mathrm{2}\pi \\ $$

Question Number 155988    Answers: 2   Comments: 0

2^2^

$$\mathrm{2}^{\overset{} {\mathrm{2}}} \\ $$

Question Number 155986    Answers: 0   Comments: 0

Question Number 155984    Answers: 0   Comments: 0

  Pg 601      Pg 602      Pg 603      Pg 604      Pg 605      Pg 606      Pg 607      Pg 608      Pg 609      Pg 610   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com