Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 606
Question Number 158118 Answers: 0 Comments: 0
Question Number 158035 Answers: 1 Comments: 0
Question Number 158030 Answers: 1 Comments: 1
$$\:\:\:\:{solve}\:{equation}\: \\ $$$$\:\:\:\mathrm{5}#+\left(\sqrt{\frac{\mathrm{5}!+\mathrm{5}}{\mathrm{5}!!+\mathrm{5}!!!}+!\mathrm{5}}−\mathrm{5}\right)\$=\mathrm{2}^{{x}} \\ $$
Question Number 158017 Answers: 0 Comments: 1
Question Number 158014 Answers: 4 Comments: 0
$$ \\ $$$$ \\ $$
Question Number 158009 Answers: 2 Comments: 0
Question Number 158005 Answers: 0 Comments: 3
Question Number 158003 Answers: 0 Comments: 3
Question Number 157995 Answers: 0 Comments: 0
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{following}\:\mathrm{tetra}− \\ $$$$\mathrm{hedral}\:\mathrm{figure}.\:\mathrm{The}\:\mathrm{length}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{rib}\:\mathrm{is}\:\mathrm{10}\:\mathrm{cm}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{area} \\ $$$$\:\mathrm{of}\:\:\mathrm{triangle}\:\mathrm{DEF}. \\ $$$$ \\ $$$$ \\ $$
Question Number 157991 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\mathrm{Length}\:\mathrm{side}\:\mathrm{of}\:\mathrm{hexagonal}\:\mathrm{above}\:\mathrm{is}\:=\mathrm{12}\: \\ $$$$\mathrm{cm}\:.\:\mathrm{Find}\:\mathrm{it}'\mathrm{s}\:\mathrm{total}\:\mathrm{area} \\ $$$$ \\ $$
Question Number 157989 Answers: 0 Comments: 2
$$\: \\ $$$${find}\:{the}\:{value}\:{of}\:: \\ $$$$\: \\ $$$$\:\:\mathrm{Max}_{\:{x}\in\:\mathbb{R}} \:\left(\:\left(\mathrm{sin}\left({x}\right)+\sqrt{\mathrm{3}}\:{cos}\left({x}\right)+\mathrm{1}\right)^{\:\mathrm{2}} =?\right. \\ $$$$ \\ $$
Question Number 157984 Answers: 1 Comments: 0
Question Number 157982 Answers: 0 Comments: 0
$$\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{xy}+{y}^{\mathrm{2}} −\mathrm{3}{y}\right){dx}+\left(\mathrm{2}{xy}−\mathrm{2}{x}^{\mathrm{2}} +\mathrm{6}{y}^{\mathrm{2}} +\mathrm{3}{x}\right){dy}=\mathrm{0} \\ $$
Question Number 157981 Answers: 1 Comments: 0
$$\mathrm{How}\:\mathrm{much}\:\mathrm{the}\:\mathrm{long}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonal} \\ $$$$\:\mathrm{space}\:,\:\mathrm{if}\:\:\mathrm{total}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{is} \\ $$$$\:\mathrm{216}\:\mathrm{cm}^{\mathrm{2}} . \\ $$
Question Number 157980 Answers: 2 Comments: 0
$$\mathrm{Calculate}\:\mathrm{this}\:\mathrm{problem}\:\mathrm{below} \\ $$$$\left.\:\:\:\:\:\:\:\:\mathrm{a}\right).\:\:\frac{\mathrm{7}!}{\left(\mathrm{5}−\mathrm{1}\right)!}\:=...... \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\mathrm{b}\right).\:\:\frac{\mathrm{5}!×\mathrm{3}!}{\mathrm{4}!}\:=...... \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{c}\right).\:\:\mathrm{6}!\:\mathrm{4}!\:=...\:\:\:\:\:\:\:\: \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\mathrm{d}\right).\:\:\frac{\mathrm{7}!}{\mathrm{3}!}×\frac{\mathrm{2}!}{\mathrm{5}!}\:=...... \\ $$
Question Number 157977 Answers: 1 Comments: 0
$$\int\:\frac{{dx}}{\left(\mathrm{1}+\sqrt[{\mathrm{4}}]{{x}}\:\right)\sqrt{{x}}}\:=? \\ $$
Question Number 157974 Answers: 0 Comments: 4
$$\mathrm{which}\:\mathrm{one}\:\mathrm{do}\:\mathrm{you}\:\mathrm{prefer}? \\ $$$$ \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left({x}\right)\:\:\:\:\:\:\:\mathrm{or}\:\:\:\:\:\:\:\mathrm{arcsin}\left({x}\right) \\ $$
Question Number 157972 Answers: 1 Comments: 6
$$\:{given}\:\:\mathrm{2}{x}=\mathrm{3}{y}\:\:{and}\:\:\mathrm{4}{y}=\mathrm{3}{z} \\ $$$$\:{find}\:\:\:\frac{\mathrm{3}{x}−\mathrm{4}{y}}{\mathrm{2}{x}−{y}+\mathrm{5}{z}} \\ $$
Question Number 158037 Answers: 0 Comments: 0
$$\left(\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\underset{\mathrm{z}\rightarrow−\:\mathrm{i}} {\mathrm{lim}}\:\:\frac{\mathrm{z}\:\:\:−\:\:\:\mathrm{i}}{\mathrm{z}^{\mathrm{2}} \:\:+\:\:\:\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\:\:\:\:\:\:\:\:\underset{\mathrm{z}\rightarrow−\:\mathrm{i}} {\mathrm{lim}}\:\:\frac{\mathrm{z}\:\:\:+\:\:\:\mathrm{i}}{\mathrm{z}^{\mathrm{2}} \:\:+\:\:\:\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\:\:\:\:\:\:\:\:\underset{\mathrm{z}\rightarrow\mathrm{i}} {\mathrm{lim}}\:\:\frac{\mathrm{2z}^{\mathrm{2}} \:\:\:−\:\:\:\mathrm{zi}\:\:\:+\:\:\:\mathrm{1}}{\mathrm{z}\:\:−\:\:\mathrm{i}} \\ $$
Question Number 157967 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{7}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:\:\mathrm{divide}\:\:\mathrm{3}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:+\:\mathrm{5}^{\mathrm{7}^{\boldsymbol{\mathrm{n}}} } \:-\:\mathrm{1} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:\:\boldsymbol{\mathrm{n}} \\ $$
Question Number 157965 Answers: 1 Comments: 1
Question Number 157964 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{4tan}\left(\mathrm{x}\right)\:+\:\frac{\mathrm{sin}\left(\mathrm{5x}\right)}{\mathrm{cos}^{\mathrm{5}} \left(\mathrm{x}\right)}\:=\:\mathrm{0} \\ $$$$ \\ $$
Question Number 157961 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} {x}^{\:\mathrm{2}} {tanh}\left({x}\right).{e}^{\:−{x}} {dx}=\frac{\pi^{\:\mathrm{3}} }{\mathrm{8}}\:−\mathrm{2}\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 157957 Answers: 1 Comments: 3
Question Number 157958 Answers: 0 Comments: 0
$$\mathrm{Find}: \\ $$$$\Omega_{\boldsymbol{\mathrm{n}}} =\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{n}}\left(\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\frac{\mathrm{k}^{\mathrm{3}} \:+\:\mathrm{k}^{\mathrm{2}} \:-\:\mathrm{3k}\:-\:\mathrm{2}}{\left(\mathrm{k}\:+\:\mathrm{2}\right)!}\right) \\ $$$$ \\ $$
Question Number 157952 Answers: 1 Comments: 0
$$\:{f}\left({x}\right)={x}^{\mathrm{2014}} +\mathrm{2}{x}^{\mathrm{2013}} +\mathrm{3}{x}^{\mathrm{2012}} +\mathrm{4}{x}^{\mathrm{2011}} +...+\mathrm{2014}{x}+\mathrm{2015} \\ $$$$\:{min}\:{f}\left({x}\right)=? \\ $$
Pg 601 Pg 602 Pg 603 Pg 604 Pg 605 Pg 606 Pg 607 Pg 608 Pg 609 Pg 610
Terms of Service
Privacy Policy
Contact: info@tinkutara.com